Las matemáticas o la matemática​ (del latín mathematĭca, y este del griego μαθηματικά, derivado de μάθημα, ‘conocimiento’) es una ciencia formal que, partiendo de axiomas y siguiendo el razonamiento lógico, estudia las propiedades y relaciones entre entidades abstractas como números, figuras geométricas, iconos, glifos, o símbolos en general. Las ciencias naturales han hecho un uso extensivo de las matemáticas para explicar diversos fenómenos observables, tal como lo expresó Eugene Paul Wigner (Premio Nobel de Física en 1963):​

Property Value
dbo:abstract
  • Las matemáticas o la matemática​ (del latín mathematĭca, y este del griego μαθηματικά, derivado de μάθημα, ‘conocimiento’) es una ciencia formal que, partiendo de axiomas y siguiendo el razonamiento lógico, estudia las propiedades y relaciones entre entidades abstractas como números, figuras geométricas, iconos, glifos, o símbolos en general. La matemática es un conjunto de lenguajes formales que pueden ser usados como herramienta para plantear problemas de manera no ambigua en contextos específicos. Por ejemplo, el siguiente enunciado podemos decirlo de dos formas: X es mayor que Y e Y es mayor que Z, o forma simplificada podemos decir que X > Y > Z. Este es el motivo por el cual las matemáticas son tan solo un lenguaje simplificado con una herramienta para cada problema específico (por ejemplo 2+2= 4, o 2x2= 4). Las ciencias naturales han hecho un uso extensivo de las matemáticas para explicar diversos fenómenos observables, tal como lo expresó Eugene Paul Wigner (Premio Nobel de Física en 1963):​ La enorme utilidad de las matemáticas en las ciencias naturales es algo que roza lo misterioso, y no hay explicación para ello. No es en absoluto natural que existan «leyes de la naturaleza», y mucho menos que el hombre sea capaz de descubrirlas. El milagro de lo apropiado que resulta el lenguaje de las matemáticas para la formulación de las leyes de la física es un regalo maravilloso que no comprendemos ni nos merecemos. Mediante la abstracción y el uso de la lógica en el razonamiento, las matemáticas han evolucionado basándose en el cálculo y las mediciones, junto con el estudio sistemático de la forma y el movimiento de los objetos físicos. Las matemáticas, desde sus comienzos, han tenido un fin práctico. Las explicaciones que se apoyaban en la lógica aparecieron por primera vez con la matemática helénica, especialmente con los Elementos de Euclides. Las matemáticas siguieron desarrollándose, con continuas interrupciones, hasta que en el Renacimiento las innovaciones matemáticas interactuaron con los nuevos descubrimientos científicos. Como consecuencia, hubo una aceleración en la investigación que continúa hasta la actualidad. Hoy día, las matemáticas se usan en todo el mundo como una herramienta esencial en muchos campos, entre los que se encuentran las ciencias naturales, la ingeniería, la medicina y las ciencias sociales, e incluso disciplinas que, aparentemente, no están vinculadas con ella, como la música (por ejemplo, en cuestiones de resonancia armónica). Las matemáticas aplicadas, rama de las matemáticas destinada a la aplicación del conocimiento matemático a otros ámbitos, inspiran y hacen uso de los nuevos descubrimientos matemáticos y, en ocasiones, conducen al desarrollo de nuevas disciplinas. Los matemáticos también participan en las matemáticas puras, sin tener en cuenta la aplicación de esta ciencia, aunque las aplicaciones prácticas de las matemáticas puras suelen ser descubiertas con el paso del tiempo. (es)
  • Las matemáticas o la matemática​ (del latín mathematĭca, y este del griego μαθηματικά, derivado de μάθημα, ‘conocimiento’) es una ciencia formal que, partiendo de axiomas y siguiendo el razonamiento lógico, estudia las propiedades y relaciones entre entidades abstractas como números, figuras geométricas, iconos, glifos, o símbolos en general. La matemática es un conjunto de lenguajes formales que pueden ser usados como herramienta para plantear problemas de manera no ambigua en contextos específicos. Por ejemplo, el siguiente enunciado podemos decirlo de dos formas: X es mayor que Y e Y es mayor que Z, o forma simplificada podemos decir que X > Y > Z. Este es el motivo por el cual las matemáticas son tan solo un lenguaje simplificado con una herramienta para cada problema específico (por ejemplo 2+2= 4, o 2x2= 4). Las ciencias naturales han hecho un uso extensivo de las matemáticas para explicar diversos fenómenos observables, tal como lo expresó Eugene Paul Wigner (Premio Nobel de Física en 1963):​ La enorme utilidad de las matemáticas en las ciencias naturales es algo que roza lo misterioso, y no hay explicación para ello. No es en absoluto natural que existan «leyes de la naturaleza», y mucho menos que el hombre sea capaz de descubrirlas. El milagro de lo apropiado que resulta el lenguaje de las matemáticas para la formulación de las leyes de la física es un regalo maravilloso que no comprendemos ni nos merecemos. Mediante la abstracción y el uso de la lógica en el razonamiento, las matemáticas han evolucionado basándose en el cálculo y las mediciones, junto con el estudio sistemático de la forma y el movimiento de los objetos físicos. Las matemáticas, desde sus comienzos, han tenido un fin práctico. Las explicaciones que se apoyaban en la lógica aparecieron por primera vez con la matemática helénica, especialmente con los Elementos de Euclides. Las matemáticas siguieron desarrollándose, con continuas interrupciones, hasta que en el Renacimiento las innovaciones matemáticas interactuaron con los nuevos descubrimientos científicos. Como consecuencia, hubo una aceleración en la investigación que continúa hasta la actualidad. Hoy día, las matemáticas se usan en todo el mundo como una herramienta esencial en muchos campos, entre los que se encuentran las ciencias naturales, la ingeniería, la medicina y las ciencias sociales, e incluso disciplinas que, aparentemente, no están vinculadas con ella, como la música (por ejemplo, en cuestiones de resonancia armónica). Las matemáticas aplicadas, rama de las matemáticas destinada a la aplicación del conocimiento matemático a otros ámbitos, inspiran y hacen uso de los nuevos descubrimientos matemáticos y, en ocasiones, conducen al desarrollo de nuevas disciplinas. Los matemáticos también participan en las matemáticas puras, sin tener en cuenta la aplicación de esta ciencia, aunque las aplicaciones prácticas de las matemáticas puras suelen ser descubiertas con el paso del tiempo. (es)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1763 (xsd:integer)
dbo:wikiPageLength
  • 41174 (xsd:integer)
dbo:wikiPageRevisionID
  • 127402214 (xsd:integer)
dct:subject
rdfs:comment
  • Las matemáticas o la matemática​ (del latín mathematĭca, y este del griego μαθηματικά, derivado de μάθημα, ‘conocimiento’) es una ciencia formal que, partiendo de axiomas y siguiendo el razonamiento lógico, estudia las propiedades y relaciones entre entidades abstractas como números, figuras geométricas, iconos, glifos, o símbolos en general. Las ciencias naturales han hecho un uso extensivo de las matemáticas para explicar diversos fenómenos observables, tal como lo expresó Eugene Paul Wigner (Premio Nobel de Física en 1963):​ (es)
  • Las matemáticas o la matemática​ (del latín mathematĭca, y este del griego μαθηματικά, derivado de μάθημα, ‘conocimiento’) es una ciencia formal que, partiendo de axiomas y siguiendo el razonamiento lógico, estudia las propiedades y relaciones entre entidades abstractas como números, figuras geométricas, iconos, glifos, o símbolos en general. Las ciencias naturales han hecho un uso extensivo de las matemáticas para explicar diversos fenómenos observables, tal como lo expresó Eugene Paul Wigner (Premio Nobel de Física en 1963):​ (es)
rdfs:label
  • Matemáticas (es)
  • Matemáticas (es)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:achievement of
is dbo:education of
is dbo:literaryGenre of
is dbo:nonFictionSubject of
is dbo:occupation of
is dbo:profession of
is dbo:regionServed of
is dbo:wikiPageRedirects of
is prop-es:campos of
is prop-es:categoría of
is prop-es:ciencias of
is prop-es:conocidoPor of
is prop-es:descripción of
is prop-es:disgustos of
is prop-es:educación of
is prop-es:empleador of
is prop-es:especialidad of
is prop-es:género of
is prop-es:habilidades of
is prop-es:intereses of
is prop-es:ocupación of
is prop-es:presentador of
is prop-es:profesión of
is prop-es:tema of
is prop-es:tipo of
is prop-es:área of
is prop-es:áreaDeInfluencia of
is owl:sameAs of
is foaf:primaryTopic of