Property |
Value |
dbo:abstract
|
- En matemáticas, una variedad casi compleja es una variedad diferenciable M equipada en cada espacio tangente con una estructura compleja que varía de forma diferenciable de punto a punto. Esta estructura compleja convierte a cada espacio tangente en un espacio vectorial complejo. La existencia de esta estructura es una condición necesaria, pero no suficiente, para que la variedad sea una variedad compleja. Así, toda variedad compleja es una variedad casi compleja, pero no viceversa. Las variedades casi complejas tienen importantes aplicaciones en geometría simpléctica. (es)
- En matemáticas, una variedad casi compleja es una variedad diferenciable M equipada en cada espacio tangente con una estructura compleja que varía de forma diferenciable de punto a punto. Esta estructura compleja convierte a cada espacio tangente en un espacio vectorial complejo. La existencia de esta estructura es una condición necesaria, pero no suficiente, para que la variedad sea una variedad compleja. Así, toda variedad compleja es una variedad casi compleja, pero no viceversa. Las variedades casi complejas tienen importantes aplicaciones en geometría simpléctica. (es)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
| |
dbo:wikiPageRevisionID
| |
dct:subject
| |
rdfs:comment
|
- En matemáticas, una variedad casi compleja es una variedad diferenciable M equipada en cada espacio tangente con una estructura compleja que varía de forma diferenciable de punto a punto. Esta estructura compleja convierte a cada espacio tangente en un espacio vectorial complejo. La existencia de esta estructura es una condición necesaria, pero no suficiente, para que la variedad sea una variedad compleja. Así, toda variedad compleja es una variedad casi compleja, pero no viceversa. Las variedades casi complejas tienen importantes aplicaciones en geometría simpléctica. (es)
- En matemáticas, una variedad casi compleja es una variedad diferenciable M equipada en cada espacio tangente con una estructura compleja que varía de forma diferenciable de punto a punto. Esta estructura compleja convierte a cada espacio tangente en un espacio vectorial complejo. La existencia de esta estructura es una condición necesaria, pero no suficiente, para que la variedad sea una variedad compleja. Así, toda variedad compleja es una variedad casi compleja, pero no viceversa. Las variedades casi complejas tienen importantes aplicaciones en geometría simpléctica. (es)
|
rdfs:label
|
- Variedad casi compleja (es)
- Variedad casi compleja (es)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |