Las nanopartículas plasmónicas son partículas metálicas de dimensiones nanométricas, cuya densidad electrónica puede acoplarse con la radiación electromagnética (luz) de cierta longitud de onda, debido a la naturaleza de la interfaz metal-dieléctrico entre el medio y las partículas​. La interacción de la luz con las partículas metálicas se debe a un fenómeno llamado resonancia de plasmón de superficie localizado, es decir , la extensión del campo electromagnético evanescente que resulta mayor en ciertos puntos sobre la superficie de la partícula. Mediante este fenómeno los electrones libres de cada partícula metálica rodean a la nanopartícula produciendo una nube electrónica en su entorno. Cuando la radiación electromagnética incide sobre las nanopartículas, su campo eléctrico traslada a l

Property Value
dbo:abstract
  • Las nanopartículas plasmónicas son partículas metálicas de dimensiones nanométricas, cuya densidad electrónica puede acoplarse con la radiación electromagnética (luz) de cierta longitud de onda, debido a la naturaleza de la interfaz metal-dieléctrico entre el medio y las partículas​. La interacción de la luz con las partículas metálicas se debe a un fenómeno llamado resonancia de plasmón de superficie localizado, es decir , la extensión del campo electromagnético evanescente que resulta mayor en ciertos puntos sobre la superficie de la partícula. Mediante este fenómeno los electrones libres de cada partícula metálica rodean a la nanopartícula produciendo una nube electrónica en su entorno. Cuando la radiación electromagnética incide sobre las nanopartículas, su campo eléctrico traslada a los electrones de su posición inicial a los extremos de la nanopartícula, presentando una carga positiva de un lado y una carga negativa del otro. Esto produce un nuevo campo eléctrico en dirección opuesta de la radiación electromagnética, causando oscilaciones sobre la nube electrónica de la nanopartícula, llamada condición de resonancia. Las nanopartículas de oro y plata son un gran ejemplo con propiedades ópticas únicas. El color intenso de las suspensiones de nanopartículas de oro y plata se debe a este tipo de propiedades. Esta coloración resulta de la excitación colectiva de electrones de conducción de las nanopartículas, llamados plasmones de superficie localizado, debido a la incidencia con luz de cierta longitud de onda. Desde la antigüedad los romanos han utilizado esta propiedad dándole color al vidrio, un claro ejemplo es la copa de Licurgo, la cual está hecha de vidrio de sodio y calcio que comprende nanopartículas de oro y plata. La copa presenta naturalmente un color verde, pero cuando la luz a traviesa el vidrio, cambia a un color rojo intenso debido a la acción de la luz en las nanopartículas.​ (es)
  • Las nanopartículas plasmónicas son partículas metálicas de dimensiones nanométricas, cuya densidad electrónica puede acoplarse con la radiación electromagnética (luz) de cierta longitud de onda, debido a la naturaleza de la interfaz metal-dieléctrico entre el medio y las partículas​. La interacción de la luz con las partículas metálicas se debe a un fenómeno llamado resonancia de plasmón de superficie localizado, es decir , la extensión del campo electromagnético evanescente que resulta mayor en ciertos puntos sobre la superficie de la partícula. Mediante este fenómeno los electrones libres de cada partícula metálica rodean a la nanopartícula produciendo una nube electrónica en su entorno. Cuando la radiación electromagnética incide sobre las nanopartículas, su campo eléctrico traslada a los electrones de su posición inicial a los extremos de la nanopartícula, presentando una carga positiva de un lado y una carga negativa del otro. Esto produce un nuevo campo eléctrico en dirección opuesta de la radiación electromagnética, causando oscilaciones sobre la nube electrónica de la nanopartícula, llamada condición de resonancia. Las nanopartículas de oro y plata son un gran ejemplo con propiedades ópticas únicas. El color intenso de las suspensiones de nanopartículas de oro y plata se debe a este tipo de propiedades. Esta coloración resulta de la excitación colectiva de electrones de conducción de las nanopartículas, llamados plasmones de superficie localizado, debido a la incidencia con luz de cierta longitud de onda. Desde la antigüedad los romanos han utilizado esta propiedad dándole color al vidrio, un claro ejemplo es la copa de Licurgo, la cual está hecha de vidrio de sodio y calcio que comprende nanopartículas de oro y plata. La copa presenta naturalmente un color verde, pero cuando la luz a traviesa el vidrio, cambia a un color rojo intenso debido a la acción de la luz en las nanopartículas.​ (es)
dbo:wikiPageID
  • 9407933 (xsd:integer)
dbo:wikiPageLength
  • 19223 (xsd:integer)
dbo:wikiPageRevisionID
  • 129808793 (xsd:integer)
dct:subject
rdfs:comment
  • Las nanopartículas plasmónicas son partículas metálicas de dimensiones nanométricas, cuya densidad electrónica puede acoplarse con la radiación electromagnética (luz) de cierta longitud de onda, debido a la naturaleza de la interfaz metal-dieléctrico entre el medio y las partículas​. La interacción de la luz con las partículas metálicas se debe a un fenómeno llamado resonancia de plasmón de superficie localizado, es decir , la extensión del campo electromagnético evanescente que resulta mayor en ciertos puntos sobre la superficie de la partícula. Mediante este fenómeno los electrones libres de cada partícula metálica rodean a la nanopartícula produciendo una nube electrónica en su entorno. Cuando la radiación electromagnética incide sobre las nanopartículas, su campo eléctrico traslada a l (es)
  • Las nanopartículas plasmónicas son partículas metálicas de dimensiones nanométricas, cuya densidad electrónica puede acoplarse con la radiación electromagnética (luz) de cierta longitud de onda, debido a la naturaleza de la interfaz metal-dieléctrico entre el medio y las partículas​. La interacción de la luz con las partículas metálicas se debe a un fenómeno llamado resonancia de plasmón de superficie localizado, es decir , la extensión del campo electromagnético evanescente que resulta mayor en ciertos puntos sobre la superficie de la partícula. Mediante este fenómeno los electrones libres de cada partícula metálica rodean a la nanopartícula produciendo una nube electrónica en su entorno. Cuando la radiación electromagnética incide sobre las nanopartículas, su campo eléctrico traslada a l (es)
rdfs:label
  • Nanopartículas plasmónicas (es)
  • Nanopartículas plasmónicas (es)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is foaf:primaryTopic of