En estadística y procesamiento de señales, un modelo autorregresivo (AR) es una representación de un proceso aleatorio, en el que la variable de interés depende de sus observaciones pasadas. Específicamente, la variable de interés o de salida, depende linealmente de sus valores anteriores. Por esto decimos que existe dependencia lineal entre las distintas observaciones de la variable. El modelo autorregresivo se trata de un caso especial del más general modelo ARMA de series de tiempo.

Property Value
dbo:abstract
  • En estadística y procesamiento de señales, un modelo autorregresivo (AR) es una representación de un proceso aleatorio, en el que la variable de interés depende de sus observaciones pasadas. Específicamente, la variable de interés o de salida, depende linealmente de sus valores anteriores. Por esto decimos que existe dependencia lineal entre las distintas observaciones de la variable. Una forma de entender un modelo autorregresivo es un proceso que luego de enfrentado a una perturbación tarda tiempo en regresar a su equilibrio de largo plazo. Suponga que nuestra variable de interés es la producción de trigo (en miles de toneladas) en una región. En cada año, la producción de trigo dependerá de las condiciones del suelo, la tecnología agrícola disponible y las condiciones climáticas. Nótese que entre un año y el siguiente, las condiciones del suelo y la tecnología agrícola pueden no cambiar (o hacerlo de forma muy lenta) como para dramáticamente afectar la producción de trigo. Las condiciones climáticas, sin embargo, pueden cambiar dramáticamente de un año a otro. Podríamos argumentar que, en la mayoría de los años (en promedio) las condiciones climáticas son buenas. Pero hay años en los que una sequía se produce. Decimos que esa sequía es una perturbación: aleja nuestra variable (la producción de trigo) de su equilibrio de largo plazo (equilibrio en el que las condiciones climáticas son buenas en promedio). Como la tecnología agrícola y las condiciones del suelo cambian lentamente entre un año y otro, la producción de trigo en cualquier año determinado estará parcialmente influida por la producción en el año anterior. La otra influencia en la producción de trigo estará dada por las perturbaciones, el clima. El modelo autorregresivo se trata de un caso especial del más general modelo ARMA de series de tiempo. (es)
  • En estadística y procesamiento de señales, un modelo autorregresivo (AR) es una representación de un proceso aleatorio, en el que la variable de interés depende de sus observaciones pasadas. Específicamente, la variable de interés o de salida, depende linealmente de sus valores anteriores. Por esto decimos que existe dependencia lineal entre las distintas observaciones de la variable. Una forma de entender un modelo autorregresivo es un proceso que luego de enfrentado a una perturbación tarda tiempo en regresar a su equilibrio de largo plazo. Suponga que nuestra variable de interés es la producción de trigo (en miles de toneladas) en una región. En cada año, la producción de trigo dependerá de las condiciones del suelo, la tecnología agrícola disponible y las condiciones climáticas. Nótese que entre un año y el siguiente, las condiciones del suelo y la tecnología agrícola pueden no cambiar (o hacerlo de forma muy lenta) como para dramáticamente afectar la producción de trigo. Las condiciones climáticas, sin embargo, pueden cambiar dramáticamente de un año a otro. Podríamos argumentar que, en la mayoría de los años (en promedio) las condiciones climáticas son buenas. Pero hay años en los que una sequía se produce. Decimos que esa sequía es una perturbación: aleja nuestra variable (la producción de trigo) de su equilibrio de largo plazo (equilibrio en el que las condiciones climáticas son buenas en promedio). Como la tecnología agrícola y las condiciones del suelo cambian lentamente entre un año y otro, la producción de trigo en cualquier año determinado estará parcialmente influida por la producción en el año anterior. La otra influencia en la producción de trigo estará dada por las perturbaciones, el clima. El modelo autorregresivo se trata de un caso especial del más general modelo ARMA de series de tiempo. (es)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 5925712 (xsd:integer)
dbo:wikiPageLength
  • 21913 (xsd:integer)
dbo:wikiPageRevisionID
  • 124365506 (xsd:integer)
dct:subject
rdfs:comment
  • En estadística y procesamiento de señales, un modelo autorregresivo (AR) es una representación de un proceso aleatorio, en el que la variable de interés depende de sus observaciones pasadas. Específicamente, la variable de interés o de salida, depende linealmente de sus valores anteriores. Por esto decimos que existe dependencia lineal entre las distintas observaciones de la variable. El modelo autorregresivo se trata de un caso especial del más general modelo ARMA de series de tiempo. (es)
  • En estadística y procesamiento de señales, un modelo autorregresivo (AR) es una representación de un proceso aleatorio, en el que la variable de interés depende de sus observaciones pasadas. Específicamente, la variable de interés o de salida, depende linealmente de sus valores anteriores. Por esto decimos que existe dependencia lineal entre las distintas observaciones de la variable. El modelo autorregresivo se trata de un caso especial del más general modelo ARMA de series de tiempo. (es)
rdfs:label
  • Modelo autorregresivo (es)
  • Modelo autorregresivo (es)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is owl:sameAs of
is foaf:primaryTopic of