Las metalotioneínas (MTs) constituyen una familia de metaloproteína ricas en cisteína, generalmente de bajo peso molecular (entre 6000 y 10000 Da). Se encuentran en el aparato de Golgi de las células (en el caso de vertebrados). Las MTs tiene la capacidad de unirse a metales pesados tanto fisiológicos (zinc y cobre) como xenobióticos (como cadmio, mercurio y plata), a través de los grupos tiol (-SH) de sus residuos de cisteína, que representan casi el 30% de aminoácidos.​ La estructura de las metalotioneínas se caracteriza por repetidas Cys-X-Cys o Cys-Cys y por la ausencia de aminoácido aromático o hidrófobo. A pesar de la presencia de numerosos residuos de cisteína (Cys), denota una falta de puente disulfuro. De hecho, todos los grupos sulfhidrilo participan en la unión de átomos de meta

Property Value
dbo:abstract
  • Las metalotioneínas (MTs) constituyen una familia de metaloproteína ricas en cisteína, generalmente de bajo peso molecular (entre 6000 y 10000 Da). Se encuentran en el aparato de Golgi de las células (en el caso de vertebrados). Las MTs tiene la capacidad de unirse a metales pesados tanto fisiológicos (zinc y cobre) como xenobióticos (como cadmio, mercurio y plata), a través de los grupos tiol (-SH) de sus residuos de cisteína, que representan casi el 30% de aminoácidos.​ La estructura de las metalotioneínas se caracteriza por repetidas Cys-X-Cys o Cys-Cys y por la ausencia de aminoácido aromático o hidrófobo. A pesar de la presencia de numerosos residuos de cisteína (Cys), denota una falta de puente disulfuro. De hecho, todos los grupos sulfhidrilo participan en la unión de átomos de metales divalente. Las MTs pueden ser inducidas por diferentes factores, dependiendo del organismo, entre ellos los metales esenciales Cu y Zn, y los no esenciales Cd, Ag y Hg, tanto en vertebrados como en invertebrados (Barka 2000). De esta manera, la exposición de organismos marinos a metales tóxicos puede ocasionar cambios en varios procesos bioquímicos, que tienen el potencial de ser usados como biomarcadores de exposición y de esta manera como ‘señales de alerta temprana’ de la presencia de estos contaminantes. Las MTs fueron descubiertas en 1957 por Vallee y Margoshe tras purificar una proteína unida a cadmio en la corteza renal equina. Las funciones de las MTs no están completamente aclaradas, pero datos experimentales sugieren que pueden proveer homeostasis de metales fisiológicamente importantes (Cu, Zn), detoxificación de metales tanto esenciales como no esenciales, y defensa antioxidante (Roesijadi, 1996; Viarengo et al., 2000; Amiard et al., 2006). Hay cuatro isoformas principales expresadas en el cuerpo humano; allí se sintetizan grandes cantidades, principalmente en el hígado y los riñones. Su síntesis depende de la disponibilidad de oligoelementos, como zinc, cobre y selenio, y los aminoácidos histidina y cisteína. La inducción de MTs ha sido detectada en organismos de áreas contaminadas o de experimentos in vitro con exposición a metales como Ag, Cd, Cu, Hg y Zn, en el laboratorio y en el campo. El alcance de la inducción de MTs puede variar entre especies y distintos tejidos. El secuestro de metales por parte de las MTs es claramente evidente en las branquias, glándula digestiva y riñones, indicando la importancia de estos tejidos en la recepción, almacenamiento y eliminación de metales (Bebianno and Langston 1998). El uso de MTs como biomarcadores ha sido validado en varios estudios in situ (Lionetto et al. 2001; Petrovic et al. 2001; Rodriguez-Ortega et al. 2002; Ross et al. 2002; Mourgaud et al. 2002). Los resultados son generalmente positivos, en particular cuando el gradiente de polución del metal es bastante real. Cada vez más estudios in situ combinan la cuantificación de varios biomarcadores, de los cuales las MTs son sólo uno (Carajaville et al. 2000; Petrovic et al. 2001; Blaise et al. 2002; Gagne´ et al. 2002; Che`vre et al. 2003; Gigue`re et al. 2003; Domouthsidou et al. 2004). De hecho, los mejillones son usados en todo el mundo en estudios de polución ambiental, y las MTs en mejillones son un buen candidato para monitorear la contaminación por metales. Los niveles de base de MTs en diferentes especies de moluscos como M. edulis (Leñillo and Lehtonen 2005) y M. galloprovincialis (Mourgaud et al. 2002; Petrovic et al. 2001; Raspor et al. 2004) son bastante similares (2–3 mg/g de peso seco en tejidos blandos enteros). (es)
  • Las metalotioneínas (MTs) constituyen una familia de metaloproteína ricas en cisteína, generalmente de bajo peso molecular (entre 6000 y 10000 Da). Se encuentran en el aparato de Golgi de las células (en el caso de vertebrados). Las MTs tiene la capacidad de unirse a metales pesados tanto fisiológicos (zinc y cobre) como xenobióticos (como cadmio, mercurio y plata), a través de los grupos tiol (-SH) de sus residuos de cisteína, que representan casi el 30% de aminoácidos.​ La estructura de las metalotioneínas se caracteriza por repetidas Cys-X-Cys o Cys-Cys y por la ausencia de aminoácido aromático o hidrófobo. A pesar de la presencia de numerosos residuos de cisteína (Cys), denota una falta de puente disulfuro. De hecho, todos los grupos sulfhidrilo participan en la unión de átomos de metales divalente. Las MTs pueden ser inducidas por diferentes factores, dependiendo del organismo, entre ellos los metales esenciales Cu y Zn, y los no esenciales Cd, Ag y Hg, tanto en vertebrados como en invertebrados (Barka 2000). De esta manera, la exposición de organismos marinos a metales tóxicos puede ocasionar cambios en varios procesos bioquímicos, que tienen el potencial de ser usados como biomarcadores de exposición y de esta manera como ‘señales de alerta temprana’ de la presencia de estos contaminantes. Las MTs fueron descubiertas en 1957 por Vallee y Margoshe tras purificar una proteína unida a cadmio en la corteza renal equina. Las funciones de las MTs no están completamente aclaradas, pero datos experimentales sugieren que pueden proveer homeostasis de metales fisiológicamente importantes (Cu, Zn), detoxificación de metales tanto esenciales como no esenciales, y defensa antioxidante (Roesijadi, 1996; Viarengo et al., 2000; Amiard et al., 2006). Hay cuatro isoformas principales expresadas en el cuerpo humano; allí se sintetizan grandes cantidades, principalmente en el hígado y los riñones. Su síntesis depende de la disponibilidad de oligoelementos, como zinc, cobre y selenio, y los aminoácidos histidina y cisteína. La inducción de MTs ha sido detectada en organismos de áreas contaminadas o de experimentos in vitro con exposición a metales como Ag, Cd, Cu, Hg y Zn, en el laboratorio y en el campo. El alcance de la inducción de MTs puede variar entre especies y distintos tejidos. El secuestro de metales por parte de las MTs es claramente evidente en las branquias, glándula digestiva y riñones, indicando la importancia de estos tejidos en la recepción, almacenamiento y eliminación de metales (Bebianno and Langston 1998). El uso de MTs como biomarcadores ha sido validado en varios estudios in situ (Lionetto et al. 2001; Petrovic et al. 2001; Rodriguez-Ortega et al. 2002; Ross et al. 2002; Mourgaud et al. 2002). Los resultados son generalmente positivos, en particular cuando el gradiente de polución del metal es bastante real. Cada vez más estudios in situ combinan la cuantificación de varios biomarcadores, de los cuales las MTs son sólo uno (Carajaville et al. 2000; Petrovic et al. 2001; Blaise et al. 2002; Gagne´ et al. 2002; Che`vre et al. 2003; Gigue`re et al. 2003; Domouthsidou et al. 2004). De hecho, los mejillones son usados en todo el mundo en estudios de polución ambiental, y las MTs en mejillones son un buen candidato para monitorear la contaminación por metales. Los niveles de base de MTs en diferentes especies de moluscos como M. edulis (Leñillo and Lehtonen 2005) y M. galloprovincialis (Mourgaud et al. 2002; Petrovic et al. 2001; Raspor et al. 2004) son bastante similares (2–3 mg/g de peso seco en tejidos blandos enteros). (es)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 4108185 (xsd:integer)
dbo:wikiPageLength
  • 22279 (xsd:integer)
dbo:wikiPageRevisionID
  • 130357802 (xsd:integer)
prop-es:autor
  • Cherian MG, Jayasurya A, Bay BH (es)
  • Cherian MG, Jayasurya A, Bay BH (es)
prop-es:doi
  • 101016 (xsd:integer)
prop-es:fecha
  • diciembre de 2003 (es)
  • diciembre de 2003 (es)
prop-es:imagen
  • Metallothionein 2kak.png (es)
  • Metallothionein 2kak.png (es)
prop-es:interpro
  • IPR003019 (es)
  • IPR003019 (es)
prop-es:nombre
  • Metalotioneína (es)
  • Metalotioneína (es)
prop-es:número
  • 1 (xsd:integer)
prop-es:pfam
  • PF00131 (es)
  • PF00131 (es)
prop-es:pieDeFoto
  • Estructura de la solución del dominio beta-E del trigo Ec-1 metalotionina . Cisteínas en amarillo, iones de zinc ligados en púrpura. (es)
  • Estructura de la solución del dominio beta-E del trigo Ec-1 metalotionina . Cisteínas en amarillo, iones de zinc ligados en púrpura. (es)
prop-es:pmid
  • 14643421 (xsd:integer)
prop-es:publicación
  • Mutat. Res. (es)
  • Mutat. Res. (es)
prop-es:páginas
  • 201 (xsd:integer)
prop-es:símbolo
  • Metalotioneína_sfam (es)
  • Metalotioneína_sfam (es)
prop-es:título
prop-es:volumen
  • 533 (xsd:integer)
dct:subject
rdfs:comment
  • Las metalotioneínas (MTs) constituyen una familia de metaloproteína ricas en cisteína, generalmente de bajo peso molecular (entre 6000 y 10000 Da). Se encuentran en el aparato de Golgi de las células (en el caso de vertebrados). Las MTs tiene la capacidad de unirse a metales pesados tanto fisiológicos (zinc y cobre) como xenobióticos (como cadmio, mercurio y plata), a través de los grupos tiol (-SH) de sus residuos de cisteína, que representan casi el 30% de aminoácidos.​ La estructura de las metalotioneínas se caracteriza por repetidas Cys-X-Cys o Cys-Cys y por la ausencia de aminoácido aromático o hidrófobo. A pesar de la presencia de numerosos residuos de cisteína (Cys), denota una falta de puente disulfuro. De hecho, todos los grupos sulfhidrilo participan en la unión de átomos de meta (es)
  • Las metalotioneínas (MTs) constituyen una familia de metaloproteína ricas en cisteína, generalmente de bajo peso molecular (entre 6000 y 10000 Da). Se encuentran en el aparato de Golgi de las células (en el caso de vertebrados). Las MTs tiene la capacidad de unirse a metales pesados tanto fisiológicos (zinc y cobre) como xenobióticos (como cadmio, mercurio y plata), a través de los grupos tiol (-SH) de sus residuos de cisteína, que representan casi el 30% de aminoácidos.​ La estructura de las metalotioneínas se caracteriza por repetidas Cys-X-Cys o Cys-Cys y por la ausencia de aminoácido aromático o hidrófobo. A pesar de la presencia de numerosos residuos de cisteína (Cys), denota una falta de puente disulfuro. De hecho, todos los grupos sulfhidrilo participan en la unión de átomos de meta (es)
rdfs:label
  • Metalotioneínas (es)
  • Metalotioneínas (es)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is owl:sameAs of
is foaf:primaryTopic of