Property |
Value |
dbo:abstract
|
- En álgebra lineal, una matriz triangular es un tipo especial de matriz cuadrada cuyos elementos por encima o por debajo de su diagonal principal son cero. Debido a que los sistemas de ecuaciones lineales con matrices triangulares son mucho más fáciles de resolver, las matrices triangulares son utilizadas en análisis numérico para resolver sistemas de ecuaciones lineales, calcular inversas y determinantes de matrices. El método de descomposición LU permite descomponer cualquier matriz invertible como producto de una matriz triangular inferior L y una superior U. (es)
- En álgebra lineal, una matriz triangular es un tipo especial de matriz cuadrada cuyos elementos por encima o por debajo de su diagonal principal son cero. Debido a que los sistemas de ecuaciones lineales con matrices triangulares son mucho más fáciles de resolver, las matrices triangulares son utilizadas en análisis numérico para resolver sistemas de ecuaciones lineales, calcular inversas y determinantes de matrices. El método de descomposición LU permite descomponer cualquier matriz invertible como producto de una matriz triangular inferior L y una superior U. (es)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
| |
dbo:wikiPageRevisionID
| |
dct:subject
| |
rdfs:comment
|
- En álgebra lineal, una matriz triangular es un tipo especial de matriz cuadrada cuyos elementos por encima o por debajo de su diagonal principal son cero. Debido a que los sistemas de ecuaciones lineales con matrices triangulares son mucho más fáciles de resolver, las matrices triangulares son utilizadas en análisis numérico para resolver sistemas de ecuaciones lineales, calcular inversas y determinantes de matrices. El método de descomposición LU permite descomponer cualquier matriz invertible como producto de una matriz triangular inferior L y una superior U. (es)
- En álgebra lineal, una matriz triangular es un tipo especial de matriz cuadrada cuyos elementos por encima o por debajo de su diagonal principal son cero. Debido a que los sistemas de ecuaciones lineales con matrices triangulares son mucho más fáciles de resolver, las matrices triangulares son utilizadas en análisis numérico para resolver sistemas de ecuaciones lineales, calcular inversas y determinantes de matrices. El método de descomposición LU permite descomponer cualquier matriz invertible como producto de una matriz triangular inferior L y una superior U. (es)
|
rdfs:label
|
- Matriz triangular (es)
- Matriz triangular (es)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |