Property |
Value |
dbo:abstract
|
- En filosofía de las matemáticas, el logicismo es la doctrina que sostiene que la matemática es en algún sentido importante reducible a la lógica, o en otras palabras que las matemáticas son básicamente una extensión de la lógica. Los logicistas sostienen que las matemáticas se pueden conocer a priori, pero sugieren que nuestro conocimiento de las matemáticas es solo parte de nuestro conocimiento de la lógica en general, y por lo tanto es analítico y no requiere ninguna facultad especial de intuición matemática. Desde este punto de vista, la lógica es el fundamento adecuado de las matemáticas y todas las afirmaciones matemáticas son verdades lógicas necesarias. Rudolf Carnap (1931) presenta la tesis logicista en dos partes: 1.
* Los conceptos matemáticos se pueden derivar de conceptos lógicos a través de definiciones explícitas 2.
* Los teoremas de las matemáticas se pueden derivar de axiomas lógicos a través de deducciones puramente lógicas Bertrand Russell y Alfred North Whitehead fueron partidarios de esta línea de pensamiento inaugurada por Gottlob Frege. El logicismo fue clave en el desarrollo de la filosofía analítica en el siglo XX, aunque a veces se alega que los teoremas de incompletitud de Gödel socavan el propósito del proyecto. (es)
- En filosofía de las matemáticas, el logicismo es la doctrina que sostiene que la matemática es en algún sentido importante reducible a la lógica, o en otras palabras que las matemáticas son básicamente una extensión de la lógica. Los logicistas sostienen que las matemáticas se pueden conocer a priori, pero sugieren que nuestro conocimiento de las matemáticas es solo parte de nuestro conocimiento de la lógica en general, y por lo tanto es analítico y no requiere ninguna facultad especial de intuición matemática. Desde este punto de vista, la lógica es el fundamento adecuado de las matemáticas y todas las afirmaciones matemáticas son verdades lógicas necesarias. Rudolf Carnap (1931) presenta la tesis logicista en dos partes: 1.
* Los conceptos matemáticos se pueden derivar de conceptos lógicos a través de definiciones explícitas 2.
* Los teoremas de las matemáticas se pueden derivar de axiomas lógicos a través de deducciones puramente lógicas Bertrand Russell y Alfred North Whitehead fueron partidarios de esta línea de pensamiento inaugurada por Gottlob Frege. El logicismo fue clave en el desarrollo de la filosofía analítica en el siglo XX, aunque a veces se alega que los teoremas de incompletitud de Gödel socavan el propósito del proyecto. (es)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
| |
dbo:wikiPageRevisionID
| |
dct:subject
| |
rdfs:comment
|
- En filosofía de las matemáticas, el logicismo es la doctrina que sostiene que la matemática es en algún sentido importante reducible a la lógica, o en otras palabras que las matemáticas son básicamente una extensión de la lógica. Los logicistas sostienen que las matemáticas se pueden conocer a priori, pero sugieren que nuestro conocimiento de las matemáticas es solo parte de nuestro conocimiento de la lógica en general, y por lo tanto es analítico y no requiere ninguna facultad especial de intuición matemática. Desde este punto de vista, la lógica es el fundamento adecuado de las matemáticas y todas las afirmaciones matemáticas son verdades lógicas necesarias. (es)
- En filosofía de las matemáticas, el logicismo es la doctrina que sostiene que la matemática es en algún sentido importante reducible a la lógica, o en otras palabras que las matemáticas son básicamente una extensión de la lógica. Los logicistas sostienen que las matemáticas se pueden conocer a priori, pero sugieren que nuestro conocimiento de las matemáticas es solo parte de nuestro conocimiento de la lógica en general, y por lo tanto es analítico y no requiere ninguna facultad especial de intuición matemática. Desde este punto de vista, la lógica es el fundamento adecuado de las matemáticas y todas las afirmaciones matemáticas son verdades lógicas necesarias. (es)
|
rdfs:label
|
- Logicismo (es)
- Logicismo (es)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |