Property |
Value |
dbo:abstract
|
- En matemáticas, sea f : D → R (donde D es un subconjunto abierto de Rn) una función real de n variables, se le llama armónica en D si sobre D tiene derivadas parciales continuas de primer y segundo orden y satisfacen la ecuación de Laplace: en D. Esto se suele escribir como o también como (es)
- En matemáticas, sea f : D → R (donde D es un subconjunto abierto de Rn) una función real de n variables, se le llama armónica en D si sobre D tiene derivadas parciales continuas de primer y segundo orden y satisfacen la ecuación de Laplace: en D. Esto se suele escribir como o también como (es)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
| |
dbo:wikiPageRevisionID
| |
prop-es:title
|
- Harmonic Function (es)
- Harmonic Function (es)
|
prop-es:urlname
|
- HarmonicFunction (es)
- HarmonicFunction (es)
|
dct:subject
| |
rdfs:comment
|
- En matemáticas, sea f : D → R (donde D es un subconjunto abierto de Rn) una función real de n variables, se le llama armónica en D si sobre D tiene derivadas parciales continuas de primer y segundo orden y satisfacen la ecuación de Laplace: en D. Esto se suele escribir como o también como (es)
- En matemáticas, sea f : D → R (donde D es un subconjunto abierto de Rn) una función real de n variables, se le llama armónica en D si sobre D tiene derivadas parciales continuas de primer y segundo orden y satisfacen la ecuación de Laplace: en D. Esto se suele escribir como o también como (es)
|
rdfs:label
|
- Función armónica (es)
- Función armónica (es)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |