En matemáticas, la función W de Lambert, denominada así en honor a Johann Heinrich Lambert, si bien también se conoce como función Omega o log producto, es la función inversa de f(w) = wew donde ew es la función exponencial natural y w es cualquier número complejo. La función se define mediante W. Para todo número complejo denominado z, se tiene:

Property Value
dbo:abstract
  • En matemáticas, la función W de Lambert, denominada así en honor a Johann Heinrich Lambert, si bien también se conoce como función Omega o log producto, es la función inversa de f(w) = wew donde ew es la función exponencial natural y w es cualquier número complejo. La función se define mediante W. Para todo número complejo denominado z, se tiene: Puesto que la función f no es inyectiva, la función W es multivaluada (excepto en 0). De restringir los argumentos reales, x y w reales, la función es definida sólo por x ≥ −1/e, y es doble-valuada en (−1/e, 0); la restricción adicional w ≥ −1 define una función simple-valuada W0(x), representable gráficamente. Tenemos W0(0) = 0 y W0(−1/e) = −1. La rama alternativa en [−1/e, 0) con w ≤ −1 es indicada como W−1(x) y decrece de W−1(−1/e) = −1 a W−1(0−) = −∞. La función W de Lambert no puede expresarse en términos de funciones elementales. Es útil en combinatoria, por ejemplo en la enumeración de árboles. Puede emplearse para resolver varias ecuaciones que alberguen exponenciales y también participa en la solución de ecuaciones diferenciales retrasadas temporalmente, como y'(t) = a y(t − 1). (es)
  • En matemáticas, la función W de Lambert, denominada así en honor a Johann Heinrich Lambert, si bien también se conoce como función Omega o log producto, es la función inversa de f(w) = wew donde ew es la función exponencial natural y w es cualquier número complejo. La función se define mediante W. Para todo número complejo denominado z, se tiene: Puesto que la función f no es inyectiva, la función W es multivaluada (excepto en 0). De restringir los argumentos reales, x y w reales, la función es definida sólo por x ≥ −1/e, y es doble-valuada en (−1/e, 0); la restricción adicional w ≥ −1 define una función simple-valuada W0(x), representable gráficamente. Tenemos W0(0) = 0 y W0(−1/e) = −1. La rama alternativa en [−1/e, 0) con w ≤ −1 es indicada como W−1(x) y decrece de W−1(−1/e) = −1 a W−1(0−) = −∞. La función W de Lambert no puede expresarse en términos de funciones elementales. Es útil en combinatoria, por ejemplo en la enumeración de árboles. Puede emplearse para resolver varias ecuaciones que alberguen exponenciales y también participa en la solución de ecuaciones diferenciales retrasadas temporalmente, como y'(t) = a y(t − 1). (es)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1751909 (xsd:integer)
dbo:wikiPageLength
  • 16110 (xsd:integer)
dbo:wikiPageRevisionID
  • 128528351 (xsd:integer)
dct:subject
rdfs:comment
  • En matemáticas, la función W de Lambert, denominada así en honor a Johann Heinrich Lambert, si bien también se conoce como función Omega o log producto, es la función inversa de f(w) = wew donde ew es la función exponencial natural y w es cualquier número complejo. La función se define mediante W. Para todo número complejo denominado z, se tiene: (es)
  • En matemáticas, la función W de Lambert, denominada así en honor a Johann Heinrich Lambert, si bien también se conoce como función Omega o log producto, es la función inversa de f(w) = wew donde ew es la función exponencial natural y w es cualquier número complejo. La función se define mediante W. Para todo número complejo denominado z, se tiene: (es)
rdfs:label
  • Función W de Lambert (es)
  • Función W de Lambert (es)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is owl:sameAs of
is foaf:primaryTopic of