Property |
Value |
dbo:abstract
|
- En análisis matemático el criterio de Leibniz es un método, debido a Gottfried Leibniz, utilizado para demostrar la convergencia de series alternadas. Una serie alternada es aquella de la forma: con an ≥ 0. Entonces, la serie convergerá si la sucesión an es monótona decreciente y (han de cumplirse ambas condiciones). Además, si y la suma parcial Sk aproxima la suma de la serie con error La inversa en general no es cierta. (es)
- En análisis matemático el criterio de Leibniz es un método, debido a Gottfried Leibniz, utilizado para demostrar la convergencia de series alternadas. Una serie alternada es aquella de la forma: con an ≥ 0. Entonces, la serie convergerá si la sucesión an es monótona decreciente y (han de cumplirse ambas condiciones). Además, si y la suma parcial Sk aproxima la suma de la serie con error La inversa en general no es cierta. (es)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
| |
dbo:wikiPageRevisionID
| |
dct:subject
| |
rdfs:comment
|
- En análisis matemático el criterio de Leibniz es un método, debido a Gottfried Leibniz, utilizado para demostrar la convergencia de series alternadas. Una serie alternada es aquella de la forma: con an ≥ 0. Entonces, la serie convergerá si la sucesión an es monótona decreciente y (han de cumplirse ambas condiciones). Además, si y la suma parcial Sk aproxima la suma de la serie con error La inversa en general no es cierta. (es)
- En análisis matemático el criterio de Leibniz es un método, debido a Gottfried Leibniz, utilizado para demostrar la convergencia de series alternadas. Una serie alternada es aquella de la forma: con an ≥ 0. Entonces, la serie convergerá si la sucesión an es monótona decreciente y (han de cumplirse ambas condiciones). Además, si y la suma parcial Sk aproxima la suma de la serie con error La inversa en general no es cierta. (es)
|
rdfs:label
|
- Criterio de Leibniz (es)
- Criterio de Leibniz (es)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |