En topología y otras áreas de la matemática, la compacidad local es una propiedad topológica de un espacio topológico debido a la cual alrededor de cada punto, localmente, el espacio tiene propiedades similares a las de un espacio compacto. Formalmente, si X es un espacio topológico entonces es localmente compacto cuando todo punto geométrico admite una base local de vecindades o entornos compactos, es decir, si cada entorno de un punto x de X contiene un conjunto compacto que sea un entorno de x.

Property Value
dbo:abstract
  • En topología y otras áreas de la matemática, la compacidad local es una propiedad topológica de un espacio topológico debido a la cual alrededor de cada punto, localmente, el espacio tiene propiedades similares a las de un espacio compacto. Formalmente, si X es un espacio topológico entonces es localmente compacto cuando todo punto geométrico admite una base local de vecindades o entornos compactos, es decir, si cada entorno de un punto x de X contiene un conjunto compacto que sea un entorno de x. Sea E un espacio topológico separado y localmente compacto.Si considerameos E' como la unión de E y un punto x no perteneciente a E, E' resulta ser un espacio compacto y separado (Hausdorff). De ahí se obtiene el Teorema de Alexandroff:Todo espacio localmente compacto está contenido en un Espacio Compacto. (es)
  • En topología y otras áreas de la matemática, la compacidad local es una propiedad topológica de un espacio topológico debido a la cual alrededor de cada punto, localmente, el espacio tiene propiedades similares a las de un espacio compacto. Formalmente, si X es un espacio topológico entonces es localmente compacto cuando todo punto geométrico admite una base local de vecindades o entornos compactos, es decir, si cada entorno de un punto x de X contiene un conjunto compacto que sea un entorno de x. Sea E un espacio topológico separado y localmente compacto.Si considerameos E' como la unión de E y un punto x no perteneciente a E, E' resulta ser un espacio compacto y separado (Hausdorff). De ahí se obtiene el Teorema de Alexandroff:Todo espacio localmente compacto está contenido en un Espacio Compacto. (es)
dbo:wikiPageID
  • 409738 (xsd:integer)
dbo:wikiPageLength
  • 1157 (xsd:integer)
dbo:wikiPageRevisionID
  • 120189833 (xsd:integer)
dct:subject
rdfs:comment
  • En topología y otras áreas de la matemática, la compacidad local es una propiedad topológica de un espacio topológico debido a la cual alrededor de cada punto, localmente, el espacio tiene propiedades similares a las de un espacio compacto. Formalmente, si X es un espacio topológico entonces es localmente compacto cuando todo punto geométrico admite una base local de vecindades o entornos compactos, es decir, si cada entorno de un punto x de X contiene un conjunto compacto que sea un entorno de x. (es)
  • En topología y otras áreas de la matemática, la compacidad local es una propiedad topológica de un espacio topológico debido a la cual alrededor de cada punto, localmente, el espacio tiene propiedades similares a las de un espacio compacto. Formalmente, si X es un espacio topológico entonces es localmente compacto cuando todo punto geométrico admite una base local de vecindades o entornos compactos, es decir, si cada entorno de un punto x de X contiene un conjunto compacto que sea un entorno de x. (es)
rdfs:label
  • Compacidad local (es)
  • Compacidad local (es)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is owl:sameAs of
is foaf:primaryTopic of