En matemáticas, el intervalo unidad o intervalo unitario es el intervalo cerrado [0,1], es decir, el conjunto de todos los números reales que son mayores o iguales que 0 y menores o iguales que 1. A menudo se le denota I. Tiene aplicaciones en análisis de variable real y en el estudio de la teoría de la homotopía en el campo de la topología. A veces se denota en la literatura por "intervalo unidad" cualquiera de las demás formas que puede tomar un intervalo comprendido entre 0 y 1: (0,1], [0,1) y (0,1). Sin embargo, la notación I se suele reservar al intervalo cerrado [0,1].

Property Value
dbo:abstract
  • En matemáticas, el intervalo unidad o intervalo unitario es el intervalo cerrado [0,1], es decir, el conjunto de todos los números reales que son mayores o iguales que 0 y menores o iguales que 1. A menudo se le denota I. Tiene aplicaciones en análisis de variable real y en el estudio de la teoría de la homotopía en el campo de la topología. A veces se denota en la literatura por "intervalo unidad" cualquiera de las demás formas que puede tomar un intervalo comprendido entre 0 y 1: (0,1], [0,1) y (0,1). Sin embargo, la notación I se suele reservar al intervalo cerrado [0,1]. (es)
  • En matemáticas, el intervalo unidad o intervalo unitario es el intervalo cerrado [0,1], es decir, el conjunto de todos los números reales que son mayores o iguales que 0 y menores o iguales que 1. A menudo se le denota I. Tiene aplicaciones en análisis de variable real y en el estudio de la teoría de la homotopía en el campo de la topología. A veces se denota en la literatura por "intervalo unidad" cualquiera de las demás formas que puede tomar un intervalo comprendido entre 0 y 1: (0,1], [0,1) y (0,1). Sin embargo, la notación I se suele reservar al intervalo cerrado [0,1]. (es)
dbo:wikiPageID
  • 2155824 (xsd:integer)
dbo:wikiPageLength
  • 2812 (xsd:integer)
dbo:wikiPageRevisionID
  • 117965085 (xsd:integer)
dct:subject
rdfs:comment
  • En matemáticas, el intervalo unidad o intervalo unitario es el intervalo cerrado [0,1], es decir, el conjunto de todos los números reales que son mayores o iguales que 0 y menores o iguales que 1. A menudo se le denota I. Tiene aplicaciones en análisis de variable real y en el estudio de la teoría de la homotopía en el campo de la topología. A veces se denota en la literatura por "intervalo unidad" cualquiera de las demás formas que puede tomar un intervalo comprendido entre 0 y 1: (0,1], [0,1) y (0,1). Sin embargo, la notación I se suele reservar al intervalo cerrado [0,1]. (es)
  • En matemáticas, el intervalo unidad o intervalo unitario es el intervalo cerrado [0,1], es decir, el conjunto de todos los números reales que son mayores o iguales que 0 y menores o iguales que 1. A menudo se le denota I. Tiene aplicaciones en análisis de variable real y en el estudio de la teoría de la homotopía en el campo de la topología. A veces se denota en la literatura por "intervalo unidad" cualquiera de las demás formas que puede tomar un intervalo comprendido entre 0 y 1: (0,1], [0,1) y (0,1). Sin embargo, la notación I se suele reservar al intervalo cerrado [0,1]. (es)
rdfs:label
  • Intervalo unidad (es)
  • Intervalo unidad (es)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is owl:sameAs of
is foaf:primaryTopic of