En teoría de grafos, un grafo rueda (Wn), o simplemente rueda, es un grafo con n vértices que se forma conectando un único vértice a todos los vértices de un ciclo-(n-1). Los grafos rueda son grafos planos, y como tales pueden ser "incrustado" en un plano. Más específicamente, todo gráfico rueda es un grafo de Halin. Son auto-duales: el dual de cualquier grafo rueda es un grafo isomórfico. En un grafo rueda siempre hay un ciclo hamiltoniano, habiendo n2-3n+3 ciclos en Wn (sucesión A002061 en OEIS). El de un grafo rueda Wn es :

Property Value
dbo:abstract
  • En teoría de grafos, un grafo rueda (Wn), o simplemente rueda, es un grafo con n vértices que se forma conectando un único vértice a todos los vértices de un ciclo-(n-1). Los grafos rueda son grafos planos, y como tales pueden ser "incrustado" en un plano. Más específicamente, todo gráfico rueda es un grafo de Halin. Son auto-duales: el dual de cualquier grafo rueda es un grafo isomórfico. En un grafo rueda siempre hay un ciclo hamiltoniano, habiendo n2-3n+3 ciclos en Wn (sucesión A002061 en OEIS). Para valores impares de n, Wn es un grafo perfecto con número cromático 3: Los vértices del ciclo pueden proporcionar dos colores, y el vértice centro proporciona un tercer color. Para valores pares de n, Wn tiene número cromático 4, y (cuando n ≥ 6) no es perfecto. W7 es el único grafo rueda que es un grafo de distancia unidad en el plano euclidiano.​ El de un grafo rueda Wn es : (es)
  • En teoría de grafos, un grafo rueda (Wn), o simplemente rueda, es un grafo con n vértices que se forma conectando un único vértice a todos los vértices de un ciclo-(n-1). Los grafos rueda son grafos planos, y como tales pueden ser "incrustado" en un plano. Más específicamente, todo gráfico rueda es un grafo de Halin. Son auto-duales: el dual de cualquier grafo rueda es un grafo isomórfico. En un grafo rueda siempre hay un ciclo hamiltoniano, habiendo n2-3n+3 ciclos en Wn (sucesión A002061 en OEIS). Para valores impares de n, Wn es un grafo perfecto con número cromático 3: Los vértices del ciclo pueden proporcionar dos colores, y el vértice centro proporciona un tercer color. Para valores pares de n, Wn tiene número cromático 4, y (cuando n ≥ 6) no es perfecto. W7 es el único grafo rueda que es un grafo de distancia unidad en el plano euclidiano.​ El de un grafo rueda Wn es : (es)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 5244148 (xsd:integer)
dbo:wikiPageLength
  • 2530 (xsd:integer)
dbo:wikiPageRevisionID
  • 120689384 (xsd:integer)
prop-es:aristas
  • 2 (xsd:integer)
prop-es:cintura
  • 3 (xsd:integer)
prop-es:diámetro
  • 1 (xsd:integer)
  • 2 (xsd:integer)
prop-es:imagen
  • Wheel graphs.svg (es)
  • Wheel graphs.svg (es)
prop-es:imagenPie
  • Algunos ejemplos de grafos rueda (es)
  • Algunos ejemplos de grafos rueda (es)
prop-es:imagenTamaño
  • 220 (xsd:integer)
prop-es:nombre
  • Grafo rueda (es)
  • Grafo rueda (es)
prop-es:númeroCromático
  • 3 (xsd:integer)
  • 4 (xsd:integer)
prop-es:propiedades
prop-es:vértices
  • n (es)
  • n (es)
dct:subject
rdfs:comment
  • En teoría de grafos, un grafo rueda (Wn), o simplemente rueda, es un grafo con n vértices que se forma conectando un único vértice a todos los vértices de un ciclo-(n-1). Los grafos rueda son grafos planos, y como tales pueden ser "incrustado" en un plano. Más específicamente, todo gráfico rueda es un grafo de Halin. Son auto-duales: el dual de cualquier grafo rueda es un grafo isomórfico. En un grafo rueda siempre hay un ciclo hamiltoniano, habiendo n2-3n+3 ciclos en Wn (sucesión A002061 en OEIS). El de un grafo rueda Wn es : (es)
  • En teoría de grafos, un grafo rueda (Wn), o simplemente rueda, es un grafo con n vértices que se forma conectando un único vértice a todos los vértices de un ciclo-(n-1). Los grafos rueda son grafos planos, y como tales pueden ser "incrustado" en un plano. Más específicamente, todo gráfico rueda es un grafo de Halin. Son auto-duales: el dual de cualquier grafo rueda es un grafo isomórfico. En un grafo rueda siempre hay un ciclo hamiltoniano, habiendo n2-3n+3 ciclos en Wn (sucesión A002061 en OEIS). El de un grafo rueda Wn es : (es)
rdfs:label
  • Grafo rueda (es)
  • Grafo rueda (es)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is owl:sameAs of
is foaf:primaryTopic of