En física y matemáticas, en el campo del cálculo vectorial, el teorema de Helmholtz, también conocido como el teorema fundamental del cálculo vectorial, afirma que cualquier campo vectorial tridimensional que sea lo bastante suave y que decaiga lo bastante rápido puede ser descompuesto en la suma de un campo vectorial irrotacional (sin rotor) más otro solenoidal (sin divergencia); esto se conoce como su descomposición Helmholtz en honor de Hermann von Helmholtz.

Property Value
dbo:abstract
  • En física y matemáticas, en el campo del cálculo vectorial, el teorema de Helmholtz, también conocido como el teorema fundamental del cálculo vectorial, afirma que cualquier campo vectorial tridimensional que sea lo bastante suave y que decaiga lo bastante rápido puede ser descompuesto en la suma de un campo vectorial irrotacional (sin rotor) más otro solenoidal (sin divergencia); esto se conoce como su descomposición Helmholtz en honor de Hermann von Helmholtz. Esto implica que cualquier campo vectorial F que cumpla las condiciones está generado por un par de potenciales: un potencial escalar φ y un potencial vector A. (es)
  • En física y matemáticas, en el campo del cálculo vectorial, el teorema de Helmholtz, también conocido como el teorema fundamental del cálculo vectorial, afirma que cualquier campo vectorial tridimensional que sea lo bastante suave y que decaiga lo bastante rápido puede ser descompuesto en la suma de un campo vectorial irrotacional (sin rotor) más otro solenoidal (sin divergencia); esto se conoce como su descomposición Helmholtz en honor de Hermann von Helmholtz. Esto implica que cualquier campo vectorial F que cumpla las condiciones está generado por un par de potenciales: un potencial escalar φ y un potencial vector A. (es)
dbo:wikiPageID
  • 4439242 (xsd:integer)
dbo:wikiPageLength
  • 11722 (xsd:integer)
dbo:wikiPageRevisionID
  • 120301357 (xsd:integer)
dct:subject
rdfs:comment
  • En física y matemáticas, en el campo del cálculo vectorial, el teorema de Helmholtz, también conocido como el teorema fundamental del cálculo vectorial, afirma que cualquier campo vectorial tridimensional que sea lo bastante suave y que decaiga lo bastante rápido puede ser descompuesto en la suma de un campo vectorial irrotacional (sin rotor) más otro solenoidal (sin divergencia); esto se conoce como su descomposición Helmholtz en honor de Hermann von Helmholtz. (es)
  • En física y matemáticas, en el campo del cálculo vectorial, el teorema de Helmholtz, también conocido como el teorema fundamental del cálculo vectorial, afirma que cualquier campo vectorial tridimensional que sea lo bastante suave y que decaiga lo bastante rápido puede ser descompuesto en la suma de un campo vectorial irrotacional (sin rotor) más otro solenoidal (sin divergencia); esto se conoce como su descomposición Helmholtz en honor de Hermann von Helmholtz. (es)
rdfs:label
  • Descomposición Helmholtz (es)
  • Descomposición Helmholtz (es)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is owl:sameAs of
is foaf:primaryTopic of