El cero absoluto es la temperatura más baja posible. A esta temperatura el nivel de energía interna del sistema es el más bajo posible, por lo que las partículas, según la mecánica clásica, carecen de movimiento;​ no obstante, según la mecánica cuántica, el cero absoluto debe tener una energía residual, llamada energía de punto cero, para poder así cumplir el principio de indeterminación de Heisenberg.El cero absoluto sirve de punto de partida tanto para la escala de Kelvin como para la escala de Rankine.​

Property Value
dbo:abstract
  • El cero absoluto es la temperatura más baja posible. A esta temperatura el nivel de energía interna del sistema es el más bajo posible, por lo que las partículas, según la mecánica clásica, carecen de movimiento;​ no obstante, según la mecánica cuántica, el cero absoluto debe tener una energía residual, llamada energía de punto cero, para poder así cumplir el principio de indeterminación de Heisenberg.El cero absoluto sirve de punto de partida tanto para la escala de Kelvin como para la escala de Rankine.​ Así, 0 K (o lo que es lo mismo, 0 R) corresponden, por definición según acuerdo internacional, a la temperatura de −273,15 °C o −459,67 °F.​ Según el tercer principio de la termodinámica, el cero absoluto es un límite inalcanzable. La cámara frigorífica actual que alcanza una menor temperatura solo llega los -273,144 °C. La razón de ello es que las moléculas de la cámara, al llegar a esa temperatura, no tienen energía suficiente para hacer que esta descienda aún más. La entropía de un cristal ideal puro y perfecto sería cero. Si los átomos que lo componen no forman un cristal perfecto, su entropía debe ser mayor que cero, por lo que la temperatura siempre será superior al cero absoluto y el cristal siempre tendrá imperfecciones inducidas por el movimiento de sus átomos, necesitando un movimiento que lo compense y, por lo tanto, teniendo siempre una imperfección residual. Cabe mencionar que a 0 K todas las sustancias conocidas se solidificarían excepto el helio y que según el actual modelo del calor, las moléculas perderían toda capacidad de moverse o vibrar. Hasta ahora la temperatura más cercana al cero absoluto ha sido obtenida en laboratorio por científicos del MIT en junio del 2015. Se obtuvo enfriando un gas en un campo magnético hasta 500 nanokelvin (5·10−7 K) por encima del cero absoluto.​ (es)
  • El cero absoluto es la temperatura más baja posible. A esta temperatura el nivel de energía interna del sistema es el más bajo posible, por lo que las partículas, según la mecánica clásica, carecen de movimiento;​ no obstante, según la mecánica cuántica, el cero absoluto debe tener una energía residual, llamada energía de punto cero, para poder así cumplir el principio de indeterminación de Heisenberg.El cero absoluto sirve de punto de partida tanto para la escala de Kelvin como para la escala de Rankine.​ Así, 0 K (o lo que es lo mismo, 0 R) corresponden, por definición según acuerdo internacional, a la temperatura de −273,15 °C o −459,67 °F.​ Según el tercer principio de la termodinámica, el cero absoluto es un límite inalcanzable. La cámara frigorífica actual que alcanza una menor temperatura solo llega los -273,144 °C. La razón de ello es que las moléculas de la cámara, al llegar a esa temperatura, no tienen energía suficiente para hacer que esta descienda aún más. La entropía de un cristal ideal puro y perfecto sería cero. Si los átomos que lo componen no forman un cristal perfecto, su entropía debe ser mayor que cero, por lo que la temperatura siempre será superior al cero absoluto y el cristal siempre tendrá imperfecciones inducidas por el movimiento de sus átomos, necesitando un movimiento que lo compense y, por lo tanto, teniendo siempre una imperfección residual. Cabe mencionar que a 0 K todas las sustancias conocidas se solidificarían excepto el helio y que según el actual modelo del calor, las moléculas perderían toda capacidad de moverse o vibrar. Hasta ahora la temperatura más cercana al cero absoluto ha sido obtenida en laboratorio por científicos del MIT en junio del 2015. Se obtuvo enfriando un gas en un campo magnético hasta 500 nanokelvin (5·10−7 K) por encima del cero absoluto.​ (es)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 9157 (xsd:integer)
dbo:wikiPageLength
  • 10551 (xsd:integer)
dbo:wikiPageRevisionID
  • 127032167 (xsd:integer)
prop-es:apellidos
  • Schachtman (es)
  • Schachtman (es)
prop-es:año
  • 1999 (xsd:integer)
prop-es:editorial
  • New York: Houghton Mifflin (es)
  • New York: Houghton Mifflin (es)
prop-es:isbn
  • 395938880 (xsd:integer)
prop-es:nombre
  • Tom (es)
  • Tom (es)
prop-es:páginas
  • 272 (xsd:integer)
prop-es:título
  • Absolute Zero and the Conquest of Cold (es)
  • Absolute Zero and the Conquest of Cold (es)
prop-es:url
dct:subject
rdfs:comment
  • El cero absoluto es la temperatura más baja posible. A esta temperatura el nivel de energía interna del sistema es el más bajo posible, por lo que las partículas, según la mecánica clásica, carecen de movimiento;​ no obstante, según la mecánica cuántica, el cero absoluto debe tener una energía residual, llamada energía de punto cero, para poder así cumplir el principio de indeterminación de Heisenberg.El cero absoluto sirve de punto de partida tanto para la escala de Kelvin como para la escala de Rankine.​ (es)
  • El cero absoluto es la temperatura más baja posible. A esta temperatura el nivel de energía interna del sistema es el más bajo posible, por lo que las partículas, según la mecánica clásica, carecen de movimiento;​ no obstante, según la mecánica cuántica, el cero absoluto debe tener una energía residual, llamada energía de punto cero, para poder así cumplir el principio de indeterminación de Heisenberg.El cero absoluto sirve de punto de partida tanto para la escala de Kelvin como para la escala de Rankine.​ (es)
rdfs:label
  • Cero absoluto (es)
  • Cero absoluto (es)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is owl:sameAs of
is foaf:primaryTopic of