This HTML5 document contains 15 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
category-eshttp://es.dbpedia.org/resource/Categoría:
dcthttp://purl.org/dc/terms/
wikipedia-eshttp://es.wikipedia.org/wiki/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-eshttp://es.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n11http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n7http://es.wikipedia.org/wiki/Modelo_generador?oldid=118715805&ns=
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/
Subject Item
wikipedia-es:Modelo_generador
foaf:primaryTopic
dbpedia-es:Modelo_generador
Subject Item
dbpedia-es:Modelo_generativo
dbo:wikiPageRedirects
dbpedia-es:Modelo_generador
Subject Item
dbr:Generative_model
owl:sameAs
dbpedia-es:Modelo_generador
Subject Item
dbpedia-es:Modelo_generador
rdfs:label
Modelo generador
rdfs:comment
En probabilidades y estadística, un Modelo Generador es un modelo para generar valores aleatorios de un dato observable, típicamente dados algunos parámetros ocultos. Este especifica una distribución conjunta sobre una secuencias de etiqueta. Los Modelos Generadores son usados en el campo de aprendizaje de máquina para modelar cualquier dato directamente, o como un paso intermedio para formar una función de densidad de probabilidad condicional. Una distribución condicional puede ser generada por un Modelo Generador mediante la Regla de Bayes. Ejemplos de modelos generadores:
dct:subject
category-es:Aprendizaje_automático category-es:Modelos_estadísticos
foaf:isPrimaryTopicOf
wikipedia-es:Modelo_generador
dbo:wikiPageID
7227092
dbo:wikiPageRevisionID
118715805
dbo:wikiPageExternalLink
n11:pdf
dbo:wikiPageLength
2506
prov:wasDerivedFrom
n7:0
dbo:abstract
En probabilidades y estadística, un Modelo Generador es un modelo para generar valores aleatorios de un dato observable, típicamente dados algunos parámetros ocultos. Este especifica una distribución conjunta sobre una secuencias de etiqueta. Los Modelos Generadores son usados en el campo de aprendizaje de máquina para modelar cualquier dato directamente, o como un paso intermedio para formar una función de densidad de probabilidad condicional. Una distribución condicional puede ser generada por un Modelo Generador mediante la Regla de Bayes. Shannon (1948) da un ejemplo en el que una tabla de frecuencias de pares de palabra en idioma inglés es usada para generar un oración comenzando con "representing and speedily is an good"; la cual no es apropiada en inglés pero cada vez más se va aproximando cuando la tabla es transformada de pares de palabras a tríos. Los modelos generadores contrastan con los modelos discriminadores; un modelo generador es un gran modelo probabilista de todas las variables, mientras que un Modelo Discriminativo proporciona un modelo solo para la(s) variable(s) etiquetada(s) como condicionales sobre las variables observadas. Por ello un modelo generador puede ser utilizado, por ejemplo, para simular (i.e. generar) valores de cualquier variable en el modelo, mientras que un Modelo Discriminativo permite el muestreo único de las variables condicionales. En la práctica las dos clases son vistas como complementarias o como diferentes observaciones del mismo procedimiento.​ Ejemplos de modelos generadores: * Modelo de mezcla gaussiana y otros tipos de modelo de mezcla * Modelo oculto de Márkov * Gramática libre de contexto probabilística * Clasificador bayesiano ingenuo * Averaged one-dependence estimators * Latent Dirichlet Allocation * Restricted Boltzman machine
Subject Item
dbpedia-es:Modelo_Generador
dbo:wikiPageRedirects
dbpedia-es:Modelo_generador