This HTML5 document contains 12 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
category-eshttp://es.dbpedia.org/resource/Categoría:
dcthttp://purl.org/dc/terms/
wikipedia-eshttp://es.wikipedia.org/wiki/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-eshttp://es.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n10http://es.wikipedia.org/wiki/Módulo_simple?oldid=120749651&ns=
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/
Subject Item
dbpedia-es:Módulo_simple
rdfs:label
Módulo simple
rdfs:comment
En matemáticas, específicamente en teoría de anillos, los módulos simples sobre un anillo R son los módulos (izquierdos o derechos) sobre R que no tienen ningún submódulo propio no nulo. De forma equivalente, un módulo M es simple si y sólo si cada submódulo cíclico generado por un elemento no nulo de M es igual a M. Los módulos simples son los bloques constituyentes de los módulos de longitud finita, y son análogos a los grupos simples en teoría de grupos.
dct:subject
category-es:Teoría_de_la_representación category-es:Teoría_de_los_módulos
foaf:isPrimaryTopicOf
wikipedia-es:Módulo_simple
dbo:wikiPageID
7580725
dbo:wikiPageRevisionID
120749651
dbo:wikiPageLength
1626
prov:wasDerivedFrom
n10:0
dbo:abstract
En matemáticas, específicamente en teoría de anillos, los módulos simples sobre un anillo R son los módulos (izquierdos o derechos) sobre R que no tienen ningún submódulo propio no nulo. De forma equivalente, un módulo M es simple si y sólo si cada submódulo cíclico generado por un elemento no nulo de M es igual a M. Los módulos simples son los bloques constituyentes de los módulos de longitud finita, y son análogos a los grupos simples en teoría de grupos.
Subject Item
dbr:Simple_module
owl:sameAs
dbpedia-es:Módulo_simple
Subject Item
wikipedia-es:Módulo_simple
foaf:primaryTopic
dbpedia-es:Módulo_simple