This HTML5 document contains 402 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
n29http://mathsci.ucd.ie/~zwegers/presentations/002.
n11http://www.mi.uni-koeln.de/~kbringma/papers.
n18https://web.archive.org/web/20080828193744/http:/www.math.wisc.edu/~ono/reprints/106.
n23https://web.archive.org/web/20081221143605/http:/www.mpim-bonn.mpg.de/Events/This+Year+and+Prospect/Mock+theta+functions/
dcthttp://purl.org/dc/terms/
category-eshttp://es.dbpedia.org/resource/Categoría:
n16https://archive.today/20121209210921/http:/journals.cms.math.ca/cgi-bin/vault/view/
wikipedia-eshttp://es.wikipedia.org/wiki/
n22https://web.archive.org/web/20081204111537/http:/www.math.psu.edu/andrews/biblio.
dbohttp://dbpedia.org/ontology/
n20https://web.archive.org/web/20080808140555/http:/www.intlpress.com/AJM/AJM-v03.
foafhttp://xmlns.com/foaf/0.1/
n14http://es.wikipedia.org/wiki/Forma_modular_simulada?oldid=129897967&ns=
dbpedia-eshttp://es.dbpedia.org/resource/
prop-eshttp://es.dbpedia.org/property/
n25http://www.math.wisc.edu/~ono/reprints/106.
rdfshttp://www.w3.org/2000/01/rdf-schema#
n21http://journals.cambridge.org/action/displayAbstract%3Faid=
n24http://www.math.wisc.edu/~ono/reprints/098.
n30http://es.dbpedia.org/resource/Springer_Science+
n7http://journals.cms.math.ca/cgi-bin/vault/view/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n26http://people.mpim-bonn.mpg.de/zagier/files/aster/326/fulltext.
n9http://igitur-archive.library.uu.nl/dissertations/2003-0127-094324/inhoud.
n15https://web.archive.org/web/20060829065534/http:/www.math.wisc.edu/~ono/reprints/098.
n17https://web.archive.org/web/20100620082612/http:/www.math.wisc.edu/~ono/reprints/index.
n10http://www.intlpress.com/AJM/AJM-v03.
n8http://mathsci.ucd.ie/~zwegers/papers/001.
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n19https://web.archive.org/web/20081023234404/http:/mathsci.ucd.ie/~zwegers/
Subject Item
wikipedia-es:Forma_modular_simulada
foaf:primaryTopic
dbpedia-es:Forma_modular_simulada
Subject Item
dbpedia-es:Forma_modular_simulada
rdfs:label
Forma modular simulada
rdfs:comment
En matemáticas, una forma modular simulada es la parte holomórfica de una débil armónica, y una función theta simulada es esencialmente una forma modular simulada de peso 1/2. Srinivasa Ramanujan describió los primeros ejemplos de funciones theta simuladas en su última carta de 1920 a G. H. Hardy y en su cuaderno perdido. () Sander Zwegers descubrió que agregarles ciertas funciones no holomorfas las convierte en formas armónicas débiles de Maass.
dct:subject
category-es:Formas_modulares category-es:Srinivasa_Ramanujan
foaf:isPrimaryTopicOf
wikipedia-es:Forma_modular_simulada
prop-es:archiveUrl
n15:pdf n16:mcintosh8634 n18:pdf
prop-es:accessDate
27 9
prop-es:align
right
prop-es:archiveDate
28 29 9
prop-es:archivedate
8
prop-es:archiveurl
n20:php
prop-es:arxiv
math/0212286 10043649 math/0311314
prop-es:author1Link
Friedrich Hirzebruch Jean-Pierre Serre Basil Gordon
prop-es:authorlink
Mathias Lerch Paul Émile Appell Ken Ono
prop-es:bibcode
1988 1999 2006 2007 2005 2010 1976 1929
prop-es:chapter
Mock theta functions, ranks and Maass forms Mock theta functions Mock θ-functions and real analytic modular forms Ramanujan's fifth order mock theta functions as constant terms Modular forms of weight 1/2
prop-es:chapterUrl
n8:pdf
prop-es:cita
hdl 21.11116/0000-0004-399B-E
prop-es:class
hep-th
prop-es:department
Séminaire Bourbaki. Exp. 986
prop-es:doi
101016 101006 101007 101112 101090 101073 104007 102307 104153 101142 101215 104310 1024033 101038
prop-es:editor1First
Krishnaswami
prop-es:editor1Last
Alladi
prop-es:editor1Link
Krishnaswami Alladi
prop-es:eprint
12084074
prop-es:fechaacceso
1
prop-es:fechaarchivo
28 29 8 9
prop-es:first
Sharon Anne S. P. George E. Youn-Seo J. Mathias Nathan J. Kathrin A. H. M. Jan Hendrik Ruth Paul Émile A. M. Friedrich M. P. Song Heng Leila A. Jean-Pierre Bruce C. G. N. Richard J. Ken F. G. Jens Sameer Atish Don Basil I. Yu. Srinivasa Dean
prop-es:isbn
978 90
prop-es:issn
151 1093 303 1793 12 8 10 1 2 24 27 20
prop-es:issue
3104 10 1 2 3 6 21
prop-es:journal
dbpedia-es:Duke_Mathematical_Journal Inventiones Mathematicae Astérisque Jahrbuch uber die Fortschritte der Mathematik Proceedings of the London Mathematical Society dbpedia-es:American_Journal_of_Mathematics The Asian Journal of Mathematics dbpedia-es:Inventiones_Mathematicae Canadian Mathematical Bulletin dbpedia-es:Transactions_of_the_American_Mathematical_Society Journal of High Energy Physics Journal of the London Mathematical Society Archiv for Mathematik og Naturvidenskab Nature Communications in Mathematical Physics Advances in Mathematics Transactions of the American Mathematical Society dbpedia-es:Proceedings_of_the_National_Academy_of_Sciences Comptes Rendus de l'Académie des Sciences, Série A et B dbpedia-es:Annals_of_Mathematics Annales Scientifiques de l'École Normale Supérieure International Journal of Number Theory
prop-es:jstor
2000275 2373202 2693766 1990714
prop-es:last
Garthwaite Hirzebruch Tipunin Selberg Appell Dragonette Gordon Bringmann Zagier Taormina Choi Lawrence Serre Dabholkar Bruinier Funke Hickerson Zwegers Watson Lerch Garvan Murthy Stark Troost Semikhatov Berndt Andrews Ramanujan McIntosh Chan Fine Ono
prop-es:location
Boston, MA Berlin, New York Providence, R.I.
prop-es:mode
cs2
prop-es:mr
2317449 2483310 969247 1783627 1013178 2280843 2605321 947735 2129953 1695205 1701924 1808245 1123099 1862564 2231957 987276 49927 938959 2293464 2097357 472707 2301875 429750 2351377 200258 814916 956465 453649 1874536
prop-es:origyear
2007
prop-es:pages
283 284 269 661 321 705 135 143 180 242 243 26 27 3 631 639 55 57 60 47 45 93 113 119 104 Ai, A883–A886 1027 442 419 3725 771 469 474 454 497 274
prop-es:pmc
1820651
prop-es:pmid
17360420
prop-es:publisher
American Mathematical Society AMS Chelsea Publishing Transactions of the American Mathematical Society, Vol. 72, No. 3 dbpedia-es:American_Mathematical_Society dbpedia-es:Academic_Press Utrecht PhD thesis n30:Business_Media
prop-es:quote
"Supóngase que hay una función en forma euleriana, y supóngase que todos o una infinidad de puntos son singularidades exponenciales, y también supóngase que en estos puntos la forma asintótica se cierra tan claramente como en los casos de y . La pregunta es: ¿Se toma la función suma de dos funciones, una de las cuales es una función ordinaria θ y la otra una función que es O en todos los puntos e2mπi/n? ... Cuando no es así, llamo a la función una función θ simulada"
prop-es:series
Contemp. Math. Proc. Sympos. Pure Math. Developments in Mathematics Lecture Notes in Mathematics Mathematical Surveys and Monographs
prop-es:source
La definición original de Ramanujan de una función theta simulada, de
prop-es:title
Mock Theta Functions The Non-Compact Elliptic Genus : Mock or Modular Tenth order mock theta functions in Ramanujan's lost notebook. III A proof of the mock theta conjectures The Final Problem : An Account of the Mock Theta Functions Über die Mock-Thetafunktionen siebenter Ordnung. On two geometric theta lifts Nombres de classes et formes modulaires de poids 3/2 Ramanujan's lost notebook. VI. The mock theta conjectures On the theorems of Watson and Dragonette for Ramanujan's mock theta functions The fifth and seventh order mock theta functions Ramanujan's mock theta functions and their applications Sixth order mock theta functions Ramanujan's lost notebook. VII. The sixth order mock theta functions Dyson's ranks and Maass forms Modular forms and quantum invariants of 3-manifolds q-series with applications to combinatorics, number theory, and physics Collected papers of Srinivasa Ramanujan On the seventh order mock theta functions The f mock theta function conjecture and partition ranks Mock Theta Function Some eighth order mock theta functions The Mock Theta Functions Tenth order mock theta functions in Ramanujan's lost notebook. IV Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus Ramanujan revisited Some asymptotic formulae for the mock theta series of Ramanujan The coefficients of the ω mock theta function Quantum Black Holes, Wall Crossing, and Mock Modular Forms Basic hypergeometric series and applications The lost notebook and other unpublished papers Modular functions of one variable, VI Lifting cusp forms to Maass forms with an application to partitions Sur les fonctions doublement périodiques de troisième espèce Surveys in Number Theory Bemerkungen zur Theorie der elliptischen Funktionen Tenth order mock theta functions in Ramanujan's lost notebook Tenth order mock theta functions in Ramanujan's lost notebook. II Theta functions—Bowdoin 1987, Part 2 Higher-level Appell functions, modular transformations, and characters Second order mock theta functions
prop-es:url
n21:63263 n24:pdf n25:pdf n26:pdf n9:htm n10:php n7:mcintosh8634
prop-es:urlarchivo
n16:mcintosh8634 n15:pdf n18:pdf n20:php
prop-es:urlname
MockThetaFunction
prop-es:volume
255 136 s2-42 156 165 171 326 354 281 293 291 72 73 94 88 89 104 2010 125 123 4 1 3 11 17 24 27 36 41 49 50 62 627 216
prop-es:width
33.0
prop-es:year
1892 1884 2006 2007 2004 2005 2002 2000 2001 2012 2010 2008 2009 1991 1988 1989 1986 1999 1975 1976 1977 1952 1966 1938 1936 1937
prop-es:zbl
118311064
dbo:wikiPageID
9495857
dbo:wikiPageRevisionID
129897967
dbo:wikiPageExternalLink
n7:mcintosh8634 n8:pdf n9:htm n10:php n11:html n15:pdf n16:mcintosh8634 n17:html n18:pdf n19: n20:php n22:html n23: n21:63263 n24:pdf n25:pdf n26:pdf n29:pdf
dbo:wikiPageLength
44259
prov:wasDerivedFrom
n14:0
dbo:abstract
En matemáticas, una forma modular simulada es la parte holomórfica de una débil armónica, y una función theta simulada es esencialmente una forma modular simulada de peso 1/2. Srinivasa Ramanujan describió los primeros ejemplos de funciones theta simuladas en su última carta de 1920 a G. H. Hardy y en su cuaderno perdido. () Sander Zwegers descubrió que agregarles ciertas funciones no holomorfas las convierte en formas armónicas débiles de Maass.