This HTML5 document contains 12 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
category-eshttp://es.dbpedia.org/resource/Categoría:
dcthttp://purl.org/dc/terms/
wikipedia-eshttp://es.wikipedia.org/wiki/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-eshttp://es.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n4http://es.wikipedia.org/wiki/Álgebra_de_Cantor?oldid=120219651&ns=
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/
Subject Item
dbpedia-es:Álgebra_de_Cantor
rdfs:label
Álgebra de Cantor
rdfs:comment
En matemáticas, el Álgebra de Cantor es un según la operación aditiva de unión y multiplicativa de intersección, puesto que para estas leyes de composición interna se cumplen las propiedades conmutativa y asociativa; sin embargo, no es un grupo puesto que las ecuaciones , no poseen soluciones; por ejemplo, para el caso en que los conjuntos no se intersequen: . Por consiguiente, el álgebra de Cantor según las operación binádicas de unión e intersección de conjuntos no es un anillo. Esta álgebra pertenece a otra clase de álgebras fundamentales, o sea a la clase de retículos.
dct:subject
category-es:Teoría_de_conjuntos category-es:Álgebra_de_Boole
foaf:isPrimaryTopicOf
wikipedia-es:Álgebra_de_Cantor
dbo:wikiPageID
7236692
dbo:wikiPageRevisionID
120219651
dbo:wikiPageLength
3256
prov:wasDerivedFrom
n4:0
dbo:abstract
En matemáticas, el Álgebra de Cantor es un según la operación aditiva de unión y multiplicativa de intersección, puesto que para estas leyes de composición interna se cumplen las propiedades conmutativa y asociativa; sin embargo, no es un grupo puesto que las ecuaciones , no poseen soluciones; por ejemplo, para el caso en que los conjuntos no se intersequen: . Por consiguiente, el álgebra de Cantor según las operación binádicas de unión e intersección de conjuntos no es un anillo. Esta álgebra pertenece a otra clase de álgebras fundamentales, o sea a la clase de retículos.
Subject Item
wikipedia-es:Álgebra_de_Cantor
foaf:primaryTopic
dbpedia-es:Álgebra_de_Cantor
Subject Item
dbr:Cantor_algebra
owl:sameAs
dbpedia-es:Álgebra_de_Cantor