Property |
Value |
dbo:abstract
|
- En matemáticas, un proceso estacionario (o proceso estrictamente estacionario) es un proceso estocástico cuya distribución de probabilidad en un instante de tiempo fijo o una posición fija es la misma para todos los instantes de tiempo o posiciones. En consecuencia, parámetros tales como la media y la varianza, si existen, no varían a lo largo del tiempo o la posición. Por ejemplo, el ruido blanco es estacionario. Sin embargo, el sonido de un golpe de platillos no es estacionario, pues la energía acústica del golpe (y por lo tanto su varianza) disminuye con el tiempo. Un proceso estacionario de , donde el espacio muestral también es discreto (de manera que la variable aleatoria pueda tomar uno de N valores posibles) se llama . Cuando N = 2, el proceso se llama proceso de Bernoulli. (es)
- En matemáticas, un proceso estacionario (o proceso estrictamente estacionario) es un proceso estocástico cuya distribución de probabilidad en un instante de tiempo fijo o una posición fija es la misma para todos los instantes de tiempo o posiciones. En consecuencia, parámetros tales como la media y la varianza, si existen, no varían a lo largo del tiempo o la posición. Por ejemplo, el ruido blanco es estacionario. Sin embargo, el sonido de un golpe de platillos no es estacionario, pues la energía acústica del golpe (y por lo tanto su varianza) disminuye con el tiempo. Un proceso estacionario de , donde el espacio muestral también es discreto (de manera que la variable aleatoria pueda tomar uno de N valores posibles) se llama . Cuando N = 2, el proceso se llama proceso de Bernoulli. (es)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
| |
dbo:wikiPageRevisionID
| |
dct:subject
| |
rdfs:comment
|
- En matemáticas, un proceso estacionario (o proceso estrictamente estacionario) es un proceso estocástico cuya distribución de probabilidad en un instante de tiempo fijo o una posición fija es la misma para todos los instantes de tiempo o posiciones. En consecuencia, parámetros tales como la media y la varianza, si existen, no varían a lo largo del tiempo o la posición. Por ejemplo, el ruido blanco es estacionario. Sin embargo, el sonido de un golpe de platillos no es estacionario, pues la energía acústica del golpe (y por lo tanto su varianza) disminuye con el tiempo. (es)
- En matemáticas, un proceso estacionario (o proceso estrictamente estacionario) es un proceso estocástico cuya distribución de probabilidad en un instante de tiempo fijo o una posición fija es la misma para todos los instantes de tiempo o posiciones. En consecuencia, parámetros tales como la media y la varianza, si existen, no varían a lo largo del tiempo o la posición. Por ejemplo, el ruido blanco es estacionario. Sin embargo, el sonido de un golpe de platillos no es estacionario, pues la energía acústica del golpe (y por lo tanto su varianza) disminuye con el tiempo. (es)
|
rdfs:label
|
- Proceso estacionario (es)
- Proceso estacionario (es)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is foaf:primaryTopic
of | |