En matemáticas, el conjunto de los números reales (denotado por ) incluye tanto a los números racionales, (positivos, negativos y el cero) como a los números irracionales;​ y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes​ (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como √5, π, o el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII.​

Property Value
dbo:abstract
  • En matemáticas, el conjunto de los números reales (denotado por ) incluye tanto a los números racionales, (positivos, negativos y el cero) como a los números irracionales;​ y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes​ (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como √5, π, o el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII.​ Los números reales pueden ser descritos y construidos de varias formas, algunas simples aunque carentes del rigor necesario para los propósitos formales de matemáticas y otras más complejas pero con el rigor necesario para el trabajo matemático formal. Durante los siglos XVI y XVII el cálculo avanzó mucho aunque carecía de una base rigurosa, puesto que en el momento prescindían del rigor y fundamento lógico, tan exigente en los enfoques teóricos de la actualidad, y se usaban expresiones como «pequeño», «límite», «se acerca» sin una definición precisa. Esto llevó a una serie de paradojas y problemas lógicos que hicieron evidente la necesidad de crear una base rigurosa para la matemática, la cual consistió de definiciones formales y rigurosas (aunque ciertamente técnicas) del concepto de número real.​ En una sección posterior se describirán dos de las definiciones precisas más usuales actualmente: clases de equivalencia de sucesiones de Cauchy de números racionales y cortaduras de Dedekind. (es)
  • En matemáticas, el conjunto de los números reales (denotado por ) incluye tanto a los números racionales, (positivos, negativos y el cero) como a los números irracionales;​ y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes​ (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como √5, π, o el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII.​ Los números reales pueden ser descritos y construidos de varias formas, algunas simples aunque carentes del rigor necesario para los propósitos formales de matemáticas y otras más complejas pero con el rigor necesario para el trabajo matemático formal. Durante los siglos XVI y XVII el cálculo avanzó mucho aunque carecía de una base rigurosa, puesto que en el momento prescindían del rigor y fundamento lógico, tan exigente en los enfoques teóricos de la actualidad, y se usaban expresiones como «pequeño», «límite», «se acerca» sin una definición precisa. Esto llevó a una serie de paradojas y problemas lógicos que hicieron evidente la necesidad de crear una base rigurosa para la matemática, la cual consistió de definiciones formales y rigurosas (aunque ciertamente técnicas) del concepto de número real.​ En una sección posterior se describirán dos de las definiciones precisas más usuales actualmente: clases de equivalencia de sucesiones de Cauchy de números racionales y cortaduras de Dedekind. (es)
dbo:wikiPageID
  • 2022 (xsd:integer)
dbo:wikiPageLength
  • 30713 (xsd:integer)
dbo:wikiPageRevisionID
  • 130454994 (xsd:integer)
dct:subject
rdfs:comment
  • En matemáticas, el conjunto de los números reales (denotado por ) incluye tanto a los números racionales, (positivos, negativos y el cero) como a los números irracionales;​ y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes​ (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como √5, π, o el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII.​ (es)
  • En matemáticas, el conjunto de los números reales (denotado por ) incluye tanto a los números racionales, (positivos, negativos y el cero) como a los números irracionales;​ y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes​ (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como √5, π, o el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII.​ (es)
rdfs:label
  • Número real (es)
  • Número real (es)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is owl:sameAs of
is foaf:primaryTopic of