Las ecuaciones de Lotka-Volterra, también conocidas como ecuaciones predador-presa o presa-predador, son un par de ecuaciones diferenciales de primer orden no lineales que se usan para describir dinámicas de sistemas biológicos en el que dos especies interactúan, una como presa y otra como depredador. Las ecuaciones fueron propuestas de forma independiente por Alfred J. Lotka en 1925 y Vito Volterra en 1926. Tales ecuaciones se definen como: donde:

Property Value
dbo:abstract
  • Las ecuaciones de Lotka-Volterra, también conocidas como ecuaciones predador-presa o presa-predador, son un par de ecuaciones diferenciales de primer orden no lineales que se usan para describir dinámicas de sistemas biológicos en el que dos especies interactúan, una como presa y otra como depredador. Las ecuaciones fueron propuestas de forma independiente por Alfred J. Lotka en 1925 y Vito Volterra en 1926. Tales ecuaciones se definen como: donde: * y es el número de algún predador (por ejemplo, un lobo); * x es el número de sus presas (por ejemplo, conejos); * dy/dt y dx/dt representa el crecimiento de las dos poblaciones en el tiempo; * t representa el tiempo; y * α, β, γ y δ son parámetros (positivos) que representan las interacciones de las dos especies. (es)
  • Las ecuaciones de Lotka-Volterra, también conocidas como ecuaciones predador-presa o presa-predador, son un par de ecuaciones diferenciales de primer orden no lineales que se usan para describir dinámicas de sistemas biológicos en el que dos especies interactúan, una como presa y otra como depredador. Las ecuaciones fueron propuestas de forma independiente por Alfred J. Lotka en 1925 y Vito Volterra en 1926. Tales ecuaciones se definen como: donde: * y es el número de algún predador (por ejemplo, un lobo); * x es el número de sus presas (por ejemplo, conejos); * dy/dt y dx/dt representa el crecimiento de las dos poblaciones en el tiempo; * t representa el tiempo; y * α, β, γ y δ son parámetros (positivos) que representan las interacciones de las dos especies. (es)
dbo:wikiPageID
  • 1726327 (xsd:integer)
dbo:wikiPageLength
  • 3024 (xsd:integer)
dbo:wikiPageRevisionID
  • 127220816 (xsd:integer)
dct:subject
rdfs:comment
  • Las ecuaciones de Lotka-Volterra, también conocidas como ecuaciones predador-presa o presa-predador, son un par de ecuaciones diferenciales de primer orden no lineales que se usan para describir dinámicas de sistemas biológicos en el que dos especies interactúan, una como presa y otra como depredador. Las ecuaciones fueron propuestas de forma independiente por Alfred J. Lotka en 1925 y Vito Volterra en 1926. Tales ecuaciones se definen como: donde: (es)
  • Las ecuaciones de Lotka-Volterra, también conocidas como ecuaciones predador-presa o presa-predador, son un par de ecuaciones diferenciales de primer orden no lineales que se usan para describir dinámicas de sistemas biológicos en el que dos especies interactúan, una como presa y otra como depredador. Las ecuaciones fueron propuestas de forma independiente por Alfred J. Lotka en 1925 y Vito Volterra en 1926. Tales ecuaciones se definen como: donde: (es)
rdfs:label
  • Ecuaciones Lotka–Volterra (es)
  • Ecuaciones Lotka–Volterra (es)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is owl:sameAs of
is foaf:primaryTopic of