En dinámica de fluidos, la ecuación de Camassa-Holm es la ecuación en derivadas parciales integrable, adimensional y no lineal. La ecuación fue introducida por Roberto Camassa y Darryl Holm​ como un modelo bi- hamiltoniano para ondas en . En este contexto el parámetro κ es positivo y las soluciones de son suaves . En el caso especial de que κ sea ​​igual a cero, la ecuación de Camassa-Holm tiene soluciones de «pico de solitón»: solitones con un pico agudo, con una discontinuidad en el pico y la pendiente de declive de la onda.

Property Value
dbo:abstract
  • En dinámica de fluidos, la ecuación de Camassa-Holm es la ecuación en derivadas parciales integrable, adimensional y no lineal. La ecuación fue introducida por Roberto Camassa y Darryl Holm​ como un modelo bi- hamiltoniano para ondas en . En este contexto el parámetro κ es positivo y las soluciones de son suaves . En el caso especial de que κ sea ​​igual a cero, la ecuación de Camassa-Holm tiene soluciones de «pico de solitón»: solitones con un pico agudo, con una discontinuidad en el pico y la pendiente de declive de la onda. (es)
  • En dinámica de fluidos, la ecuación de Camassa-Holm es la ecuación en derivadas parciales integrable, adimensional y no lineal. La ecuación fue introducida por Roberto Camassa y Darryl Holm​ como un modelo bi- hamiltoniano para ondas en . En este contexto el parámetro κ es positivo y las soluciones de son suaves . En el caso especial de que κ sea ​​igual a cero, la ecuación de Camassa-Holm tiene soluciones de «pico de solitón»: solitones con un pico agudo, con una discontinuidad en el pico y la pendiente de declive de la onda. (es)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 8942434 (xsd:integer)
dbo:wikiPageLength
  • 49843 (xsd:integer)
dbo:wikiPageRevisionID
  • 120497193 (xsd:integer)
prop-es:arxiv
  • 7072048 (xsd:integer)
  • 7090905 (xsd:integer)
  • 7114701 (xsd:integer)
  • 8124681 (xsd:integer)
  • 9020391 (xsd:integer)
  • 12043354 (xsd:integer)
  • 12055831 (xsd:integer)
  • math-ph/0303063 (es)
  • math-ph/0506042 (es)
  • math/0208076 (es)
  • math/0210397 (es)
  • math/0601156 (es)
  • math/0604192 (es)
  • nlin/0105025 (es)
  • nlin/0602049 (es)
  • nlin/0603019 (es)
  • patt-sol/9305002 (es)
  • solv-int/9709010 (es)
  • solv-int/9901001 (es)
  • solv-int/9903011 (es)
  • solv-int/9906001 (es)
prop-es:author2Link
  • Gerald Teschl (es)
  • Gerald Teschl (es)
prop-es:author4Link
  • Gerald Teschl (es)
  • Gerald Teschl (es)
prop-es:authorLink
  • Alberto Bressan (es)
  • Boris Khesin (es)
  • Henry McKean (es)
  • Peter J. Olver (es)
  • Richard Beals (es)
  • Alberto Bressan (es)
  • Boris Khesin (es)
  • Henry McKean (es)
  • Peter J. Olver (es)
  • Richard Beals (es)
prop-es:authorlink
  • Helge Holden (es)
  • Liao Shijun (es)
  • Helge Holden (es)
  • Liao Shijun (es)
prop-es:bibcode
  • 1981 (xsd:integer)
  • 1993 (xsd:integer)
  • 1994 (xsd:integer)
  • 1996 (xsd:integer)
  • 1998 (xsd:integer)
  • 1999 (xsd:integer)
  • 2000 (xsd:integer)
  • 2001 (xsd:integer)
  • 2002 (xsd:integer)
  • 2003 (xsd:integer)
  • 2004 (xsd:integer)
  • 2005 (xsd:integer)
  • 2006 (xsd:integer)
  • 2007 (xsd:integer)
  • 2008 (xsd:integer)
  • 2009 (xsd:integer)
  • 2014 (xsd:integer)
prop-es:doi
  • 101002 (xsd:integer)
  • 101006 (xsd:integer)
  • 101007 (xsd:integer)
  • 101016 (xsd:integer)
  • 101017 (xsd:integer)
  • 101023 (xsd:integer)
  • 101063 (xsd:integer)
  • 101080 (xsd:integer)
  • 101081 (xsd:integer)
  • 101088 (xsd:integer)
  • 101098 (xsd:integer)
  • 101103 (xsd:integer)
  • 101111 (xsd:integer)
  • 101137 (xsd:integer)
  • 101142 (xsd:integer)
  • 101143 (xsd:integer)
  • 101155 (xsd:integer)
  • 101512 (xsd:integer)
  • 101515 (xsd:integer)
  • 102991 (xsd:integer)
  • 103934 (xsd:integer)
  • 105802 (xsd:integer)
  • 107146 (xsd:integer)
prop-es:fechaacceso
  • 28 (xsd:integer)
prop-es:fechaarchivo
  • 3 (xsd:integer)
  • 22 (xsd:integer)
prop-es:first
  • Marco (es)
  • Jonathan (es)
  • Michael (es)
  • Roberto (es)
  • Gustavo (es)
  • Enrique (es)
  • Ping (es)
  • Shuyin (es)
  • Delia (es)
  • Peter (es)
  • Anne (es)
  • Jonatan (es)
  • Aleksey (es)
  • Philip (es)
  • A. (es)
  • Guillermo (es)
  • D. J. (es)
  • Erik (es)
  • S.J. (es)
  • Luca (es)
  • Maxim (es)
  • Adrian (es)
  • Xavier (es)
  • Gerard (es)
  • Tamara (es)
  • Allen (es)
  • Fritz (es)
  • Luc (es)
  • Robin S. (es)
  • Boris (es)
  • Raphaël (es)
  • Richard (es)
  • Vladimir (es)
  • David (es)
  • Vincenzo (es)
  • Alberto (es)
  • Joachim (es)
  • Thomas (es)
  • Long (es)
  • Dmitry (es)
  • Jeremy (es)
  • Giovanni (es)
  • Robert (es)
  • Paolo (es)
  • Helge (es)
  • V. (es)
  • Gerald (es)
  • Yong (es)
  • Camillo (es)
  • P. (es)
  • Peter J. (es)
  • J. M. (es)
  • Jacek (es)
  • John P. (es)
  • Benno (es)
  • Simonetta (es)
  • Walter A. (es)
  • I. (es)
  • K. L. (es)
  • David H. (es)
  • Maria Carmela (es)
  • Hans Joachim (es)
  • Henry P. (es)
  • Mark S. (es)
  • Rossen (es)
  • Zhaoyang (es)
  • A. Alexandrou (es)
  • Athanassios S. (es)
  • Brynjulf (es)
  • Costin-Radu (es)
  • Darryl D. (es)
  • Enrique G. (es)
  • Giuseppe Maria (es)
  • Hui-Hui (es)
  • Jerrold E. (es)
  • Jingfang (es)
  • Kenneth Hvistendahl (es)
  • Luen-Chau (es)
  • Nils Henrik (es)
  • Rossen I. (es)
  • Seok (es)
  • Vladimir S. (es)
  • Yuri N. (es)
  • Zhijun (es)
  • Zhouping (es)
  • Marco (es)
  • Jonathan (es)
  • Michael (es)
  • Roberto (es)
  • Gustavo (es)
  • Enrique (es)
  • Ping (es)
  • Shuyin (es)
  • Delia (es)
  • Peter (es)
  • Anne (es)
  • Jonatan (es)
  • Aleksey (es)
  • Philip (es)
  • A. (es)
  • Guillermo (es)
  • D. J. (es)
  • Erik (es)
  • S.J. (es)
  • Luca (es)
  • Maxim (es)
  • Adrian (es)
  • Xavier (es)
  • Gerard (es)
  • Tamara (es)
  • Allen (es)
  • Fritz (es)
  • Luc (es)
  • Robin S. (es)
  • Boris (es)
  • Raphaël (es)
  • Richard (es)
  • Vladimir (es)
  • David (es)
  • Vincenzo (es)
  • Alberto (es)
  • Joachim (es)
  • Thomas (es)
  • Long (es)
  • Dmitry (es)
  • Jeremy (es)
  • Giovanni (es)
  • Robert (es)
  • Paolo (es)
  • Helge (es)
  • V. (es)
  • Gerald (es)
  • Yong (es)
  • Camillo (es)
  • P. (es)
  • Peter J. (es)
  • J. M. (es)
  • Jacek (es)
  • John P. (es)
  • Benno (es)
  • Simonetta (es)
  • Walter A. (es)
  • I. (es)
  • K. L. (es)
  • David H. (es)
  • Maria Carmela (es)
  • Hans Joachim (es)
  • Henry P. (es)
  • Mark S. (es)
  • Rossen (es)
  • Zhaoyang (es)
  • A. Alexandrou (es)
  • Athanassios S. (es)
  • Brynjulf (es)
  • Costin-Radu (es)
  • Darryl D. (es)
  • Enrique G. (es)
  • Giuseppe Maria (es)
  • Hui-Hui (es)
  • Jerrold E. (es)
  • Jingfang (es)
  • Kenneth Hvistendahl (es)
  • Luen-Chau (es)
  • Nils Henrik (es)
  • Rossen I. (es)
  • Seok (es)
  • Vladimir S. (es)
  • Yuri N. (es)
  • Zhijun (es)
  • Zhouping (es)
prop-es:isbn
  • 9780120020317 (xsd:double)
prop-es:issue
  • 1 (xsd:integer)
  • 2 (xsd:integer)
  • 3 (xsd:integer)
  • 4 (xsd:integer)
  • 5 (xsd:integer)
  • 6 (xsd:integer)
  • 7 (xsd:integer)
  • 8 (xsd:integer)
  • 9 (xsd:integer)
  • 10 (xsd:integer)
  • 11 (xsd:integer)
  • 51 (xsd:integer)
  • 71 (xsd:integer)
  • 2008 (xsd:integer)
  • 2035 (xsd:integer)
  • 2050 (xsd:integer)
  • 2063 (xsd:integer)
  • 2064 (xsd:integer)
  • suppl. 1 (es)
prop-es:journal
  • Archive for Rational Mechanics and Analysis (es)
  • Comm. Pure Appl. Math. (es)
  • Communications in Nonlinear Science and Numerical Simulation (es)
  • J. Nonlinear Sci. (es)
  • Archive for Rational Mechanics and Analysis (es)
  • Comm. Pure Appl. Math. (es)
  • Communications in Nonlinear Science and Numerical Simulation (es)
  • J. Nonlinear Sci. (es)
prop-es:last
  • Reyes (es)
  • Ponce (es)
  • Li (es)
  • Sciacca (es)
  • McKean (es)
  • Holden (es)
  • Wu (es)
  • Zhang (es)
  • Olver (es)
  • Ivanov (es)
  • Pedroni (es)
  • Pavlov (es)
  • Cohen (es)
  • Strauss (es)
  • Parker (es)
  • Raynaud (es)
  • Escher (es)
  • Lannes (es)
  • Hwang (es)
  • Johnson (es)
  • Yin (es)
  • Zhou (es)
  • Boyd (es)
  • Holm (es)
  • Molinet (es)
  • Topalov (es)
  • Dai (es)
  • Lombardo (es)
  • Lee (es)
  • Rosenau (es)
  • Bressan (es)
  • Grava (es)
  • Fisher (es)
  • Marsden (es)
  • Byers (es)
  • Beals (es)
  • Rubtsov (es)
  • Kolev (es)
  • Danchin (es)
  • Qiao (es)
  • Karlsen (es)
  • Alber (es)
  • Constantin (es)
  • Hyman (es)
  • Eckhardt (es)
  • Kersten (es)
  • Huang (es)
  • Kappeler (es)
  • Fedorov (es)
  • Schiff (es)
  • Golovko (es)
  • Loubet (es)
  • Xin (es)
  • Liao (es)
  • Abenda (es)
  • Artebrant (es)
  • Boldea (es)
  • Boutet de Monvel (es)
  • Camassa (es)
  • Casati (es)
  • Coclite (es)
  • Fokas (es)
  • Fuchssteiner (es)
  • Gerdjikov (es)
  • Gesztesy (es)
  • Himonas (es)
  • Ionescu-Kruse (es)
  • Kaup (es)
  • Khesin (es)
  • Kostenko (es)
  • Krasilʹshchik (es)
  • Lenells (es)
  • Lorenzoni (es)
  • Misiołek (es)
  • Ortenzi (es)
  • Owren (es)
  • Risebro (es)
  • Rodríguez-Blanco (es)
  • Sammartino (es)
  • Sattinger (es)
  • Schroll (es)
  • Shepelsky (es)
  • Szmigielski (es)
  • Teschl (es)
  • Vaninsky (es)
  • Verbovetsky (es)
  • Wahlén (es)
  • Zampogni (es)
  • de Lellis (es)
  • Reyes (es)
  • Ponce (es)
  • Li (es)
  • Sciacca (es)
  • McKean (es)
  • Holden (es)
  • Wu (es)
  • Zhang (es)
  • Olver (es)
  • Ivanov (es)
  • Pedroni (es)
  • Pavlov (es)
  • Cohen (es)
  • Strauss (es)
  • Parker (es)
  • Raynaud (es)
  • Escher (es)
  • Lannes (es)
  • Hwang (es)
  • Johnson (es)
  • Yin (es)
  • Zhou (es)
  • Boyd (es)
  • Holm (es)
  • Molinet (es)
  • Topalov (es)
  • Dai (es)
  • Lombardo (es)
  • Lee (es)
  • Rosenau (es)
  • Bressan (es)
  • Grava (es)
  • Fisher (es)
  • Marsden (es)
  • Byers (es)
  • Beals (es)
  • Rubtsov (es)
  • Kolev (es)
  • Danchin (es)
  • Qiao (es)
  • Karlsen (es)
  • Alber (es)
  • Constantin (es)
  • Hyman (es)
  • Eckhardt (es)
  • Kersten (es)
  • Huang (es)
  • Kappeler (es)
  • Fedorov (es)
  • Schiff (es)
  • Golovko (es)
  • Loubet (es)
  • Xin (es)
  • Liao (es)
  • Abenda (es)
  • Artebrant (es)
  • Boldea (es)
  • Boutet de Monvel (es)
  • Camassa (es)
  • Casati (es)
  • Coclite (es)
  • Fokas (es)
  • Fuchssteiner (es)
  • Gerdjikov (es)
  • Gesztesy (es)
  • Himonas (es)
  • Ionescu-Kruse (es)
  • Kaup (es)
  • Khesin (es)
  • Kostenko (es)
  • Krasilʹshchik (es)
  • Lenells (es)
  • Lorenzoni (es)
  • Misiołek (es)
  • Ortenzi (es)
  • Owren (es)
  • Risebro (es)
  • Rodríguez-Blanco (es)
  • Sammartino (es)
  • Sattinger (es)
  • Schroll (es)
  • Shepelsky (es)
  • Szmigielski (es)
  • Teschl (es)
  • Vaninsky (es)
  • Verbovetsky (es)
  • Wahlén (es)
  • Zampogni (es)
  • de Lellis (es)
prop-es:pages
  • 1 (xsd:integer)
  • 24 (xsd:integer)
  • 33 (xsd:integer)
  • 39 (xsd:integer)
  • 45 (xsd:integer)
  • 47 (xsd:integer)
  • 53 (xsd:integer)
  • 59 (xsd:integer)
  • 63 (xsd:integer)
  • 72 (xsd:integer)
  • 73 (xsd:integer)
  • 74 (xsd:integer)
  • 75 (xsd:integer)
  • 87 (xsd:integer)
  • 93 (xsd:integer)
  • 97 (xsd:integer)
  • 115 (xsd:integer)
  • 116 (xsd:integer)
  • 117 (xsd:integer)
  • 135 (xsd:integer)
  • 137 (xsd:integer)
  • 146 (xsd:integer)
  • 149 (xsd:integer)
  • 151 (xsd:integer)
  • 165 (xsd:integer)
  • 186 (xsd:integer)
  • 188 (xsd:integer)
  • 193 (xsd:integer)
  • 197 (xsd:integer)
  • 203 (xsd:integer)
  • 215 (xsd:integer)
  • 220 (xsd:integer)
  • 229 (xsd:integer)
  • 243 (xsd:integer)
  • 303 (xsd:integer)
  • 309 (xsd:integer)
  • 321 (xsd:integer)
  • 334 (xsd:integer)
  • 342 (xsd:integer)
  • 345 (xsd:integer)
  • 352 (xsd:integer)
  • 371 (xsd:integer)
  • 377 (xsd:integer)
  • 393 (xsd:integer)
  • 408 (xsd:integer)
  • 415 (xsd:integer)
  • 416 (xsd:integer)
  • 429 (xsd:integer)
  • 469 (xsd:integer)
  • 475 (xsd:integer)
  • 485 (xsd:integer)
  • 505 (xsd:integer)
  • 511 (xsd:integer)
  • 531 (xsd:integer)
  • 547 (xsd:integer)
  • 599 (xsd:integer)
  • 603 (xsd:integer)
  • 611 (xsd:integer)
  • 627 (xsd:integer)
  • 638 (xsd:integer)
  • 659 (xsd:integer)
  • 695 (xsd:integer)
  • 730 (xsd:integer)
  • 787 (xsd:integer)
  • 821 (xsd:integer)
  • 861 (xsd:integer)
  • 869 (xsd:integer)
  • 941 (xsd:integer)
  • 945 (xsd:integer)
  • 949 (xsd:integer)
  • 953 (xsd:integer)
  • 998 (xsd:integer)
  • 1080 (xsd:integer)
  • 1149 (xsd:integer)
  • 1253 (xsd:integer)
  • 1468 (xsd:integer)
  • 1511 (xsd:integer)
  • 1554 (xsd:integer)
  • 1559 (xsd:integer)
  • 1565 (xsd:integer)
  • 1655 (xsd:integer)
  • 1661 (xsd:integer)
  • 1687 (xsd:integer)
  • 1792 (xsd:integer)
  • 1803 (xsd:integer)
  • 1815 (xsd:integer)
  • 1900 (xsd:integer)
  • 2197 (xsd:integer)
  • 2929 (xsd:integer)
  • 3135 (xsd:integer)
  • 3611 (xsd:integer)
  • 3655 (xsd:integer)
  • 3797 (xsd:integer)
  • 3893 (xsd:integer)
  • 5492 (xsd:integer)
  • 13504 (xsd:integer)
  • 23506 (xsd:integer)
  • 42704 (xsd:integer)
  • L1–L4 (es)
  • Art. ID 28976, 12 pp (es)
prop-es:periodical
  • dbpedia-es:Communications_in_Mathematical_Physics
  • dbpedia-es:Advances_in_Mathematics
  • dbpedia-es:International_Mathematics_Research_Notices
  • dbpedia-es:Geometric_and_Functional_Analysis
  • dbpedia-es:Annales_de_l'Institut_Fourier
  • dbpedia-es:Communications_on_Pure_and_Applied_Mathematics
  • Acta Math. (es)
  • Physica D (es)
  • Phys. Rev. Lett. (es)
  • Acta Appl. Math. (es)
  • Acta Mech. (es)
  • Adv. Appl. Mech. (es)
  • Adv. Math. (es)
  • Adv. Nonlinear Stud. (es)
  • Anal. Appl. (es)
  • Ann. Scuola Norm. Sup. Pisa Cl. Sci. (es)
  • Annales de l'Institut Fourier (es)
  • Applied Numerical Mathematics (es)
  • Arch. Ration. Mech. Anal. (es)
  • Archiv der Mathematik (es)
  • C. R. Math. Acad. Sci. Paris (es)
  • Chaos, Solitons & Fractals (es)
  • Comm. Math. Phys. (es)
  • Comm. Partial Differential Equations (es)
  • Comm. Pure Appl. Math. (es)
  • Comment. Math. Helv. (es)
  • Commun. Pure Appl. Math. (es)
  • Communications in Partial Differential Equations (es)
  • Differential Integral Equations (es)
  • Differential and Integral Equations (es)
  • Discrete Contin. Dyn. Syst. (es)
  • Discrete Contin. Dyn. Syst. Ser. B (es)
  • Exposition. Math. (es)
  • Fluid Dynam. Res. (es)
  • General Mathematics (es)
  • Indiana Univ. Math. J. (es)
  • Int. Math. Res. Not. (es)
  • Inverse Problems (es)
  • J. Comput. Phys. (es)
  • J. Differential Equations (es)
  • J. Fluid Mech. (es)
  • J. Funct. Anal. (es)
  • J. Geom. Phys. (es)
  • J. Hyperbolic Differ. Equ. (es)
  • J. Inst. Math. Jussieu (es)
  • J. Math. Anal. Appl. (es)
  • J. Math. Phys. (es)
  • J. Nonlinear Math. Phys. (es)
  • J. Phys. A (es)
  • J. Phys. Soc. Jpn. (es)
  • Journal of Computational Physics (es)
  • Journal of Differential Equations (es)
  • Lett. Math. Phys. (es)
  • Math. Z. (es)
  • Mathematica Scandinavica (es)
  • Nonlinear Analysis (es)
  • Phys. D (es)
  • Phys. Lett. A (es)
  • Phys. Rev. E (es)
  • Physics Letters A (es)
  • Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. (es)
  • Progr. Theoret. Phys. (es)
  • R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. (es)
  • Rev. Mat. Iberoamericana (es)
  • SIAM J. Math. Anal. (es)
  • SIAM J. Numer. Anal. (es)
  • Stud. Appl. Math. (es)
prop-es:pmid
  • 10054466 (xsd:integer)
prop-es:series
  • Advances in Applied Mechanics (es)
  • Advances in Applied Mechanics (es)
prop-es:title
  • Orbital stability of solitary waves for a shallow water equation (es)
  • A blow-up result for the periodic Camassa–Holm equation (es)
  • Singular limit problem of the Camassa–Holm type equation (es)
  • Low-regularity solutions of the periodic Camassa–Holm equation (es)
  • Modulation of Camassa–Holm equation and reciprocal transformations (es)
  • On the Cauchy problem for the Camassa–Holm equation (es)
  • Geodesic flow on the diffeomorphism group of the circle (es)
  • Existence time for the Camassa–Holm equation and the critical Sobolev index (es)
  • Multi-symplectic integration of the Camassa–Holm equation (es)
  • The Camassa–Holm equation for water waves moving over a shear flow (es)
  • Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod (es)
  • On the Camassa–Holm equation and a direct method of solution. III. N-soliton solutions (es)
  • Global conservative solutions of the Camassa–Holm equation—a Lagrangian point of view (es)
  • On the scattering problem for the Camassa–Holm equation (es)
  • On the Camassa–Holm equation and a direct method of solution. II. Soliton solutions (es)
  • Riemann–Hilbert approach for the Camassa–Holm equation on the line (es)
  • Long-Time Asymptotics for the Camassa–Holm Equation (es)
  • The Lie algebra structure of nonlinear evolution equations admitting infinite-dimensional abelian symmetry groups (es)
  • The classical problem of water waves: a reservoir of integrable and nearly-integrable equations (es)
  • An explicit finite difference scheme for the Camassa–Holm equation (es)
  • On the higher Poisson structures of the Camassa–Holm hierarchy (es)
  • Factorization problem on the Hilbert–Schmidt group and the Camassa–Holm equation (es)
  • Wave dynamics for peaked solitons of the Camassa–Holm equation (es)
  • The Camassa–Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold (es)
  • Global existence of weak solutions to the Camassa–Holm equation (es)
  • Characteristics and the initial value problem of a completely integrable shallow water equation (es)
  • Geometric integrability of the Camassa–Holm equation (es)
  • Poisson structure and action-angle variables for the Camassa–Holm equation (es)
  • On the blow-up rate and the blow-up set of breaking waves for a shallow water equation (es)
  • On algebro-geometric solutions of the Camassa–Holm hierarchy (es)
  • Equations of Camassa–Holm type and Jacobi ellipsoidal coordinates (es)
  • Generalized Fourier transform for the Camassa–Holm hierarchy (es)
  • High-frequency smooth solutions and well-posedness of the Camassa–Holm equation (es)
  • A few remarks on the Camassa–Holm equation (es)
  • A shallow water equation on the circle (es)
  • Advances in Applied Mechanics Volume 31 (es)
  • Persistence properties and unique continuation of solutions of the Camassa–Holm equation (es)
  • Breakdown of the Camassa–Holm equation (es)
  • Conservation laws of the Camassa–Holm equation (es)
  • Do peaked solitary water waves indeed exist? (es)
  • Camassa–Holm, Korteweg–de Vries and related models for water waves (es)
  • On a completely integrable numerical scheme for a nonlinear shallow-water wave equation (es)
  • Global weak solutions for a shallow water equation (es)
  • On integrability of the Camassa–Holm equation and its invariants: a geometrical approach (es)
  • Multi-peakons and a theorem of Stieltjes (es)
  • Multipeakons and the classical moment problem (es)
  • Near-corner waves of the Camassa–Holm equation (es)
  • On solutions of the Camassa–Holm equation (es)
  • Periodic peakons and Calogero–Françoise flows (es)
  • Stability for the periodic Camassa–Holm equation (es)
  • Stability of peakons (es)
  • Stability of periodic peakons (es)
  • Stability of the Camassa–Holm solitons (es)
  • The Camassa–Holm equation on the half-line (es)
  • The Camassa–Holm equation: a loop group approach (es)
  • The correspondence between KdV and Camassa–Holm (es)
  • A singular limit problem for conservation laws related to the Camassa–Holm shallow water equation (es)
  • Cusped solitons of the Camassa–Holm equation. I. Cuspon solitary wave and antipeakon limit (es)
  • On the uniqueness and large time behavior of the weak solutions to a shallow water equation (es)
  • The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies (es)
  • Global conservative solutions of the Camassa–Holm equation (es)
  • The Camassa–Holm equation: conserved quantities and the initial value problem (es)
  • Inverse scattering transform for the Camassa–Holm equation (es)
  • A generalization for peakon's solitary wave and Camassa–Holm equation (es)
  • A convergent finite difference scheme for the Camassa–Holm equation with general H1 initial data (es)
  • Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support (es)
  • Genesis of solitons arising from individual flows of the Camassa–Holm hierarchy (es)
  • Existence of permanent and breaking waves for a shallow water equation: a geometric approach (es)
  • Fredholm determinants and the Camassa–Holm hierarchy (es)
  • Periodic conservative solutions of the Camassa–Holm equation (es)
  • Classical solutions of the periodic Camassa–Holm equation (es)
  • A shallow water equation as a geodesic flow on the Bott–Virasoro group (es)
  • Infinite propagation speed of the Camassa–Holm equation (es)
  • The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE's of shallow water and Dym type (es)
  • A convergent numerical scheme for the Camassa–Holm equation based on multipeakons (es)
  • The geometry of peaked solitons and billiard solutions of a class of integrable PDEs (es)
  • Global existence and blow-up for a shallow water equation (es)
  • Traveling wave solutions of the Camassa–Holm equation (es)
  • Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation (es)
  • About the explicit characterization of Hamiltonians of the Camassa–Holm hierarchy (es)
  • Numerical simulation of Camassa–Holm peakons by adaptive upwinding (es)
  • On the Camassa–Holm equation and a direct method of solution. I. Bilinear form and solitary waves (es)
  • The Cauchy problem for an integrable shallow-water equation (es)
  • A factorization procedure for solving the Camassa–Holm equation (es)
  • Dissipative solutions for the Camassa–Holm equation (es)
  • A note on well-posedness for Camassa–Holm equation (es)
  • The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations (es)
  • Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation (es)
  • On the isospectral problem of the dispersionless Camassa-Holm equation (es)
  • Variational derivation of the Camassa–Holm shallow water equation with non-zero vorticity (es)
  • A variational approach to the stability of periodic peakons (es)
  • The Hamiltonian structure of the Camassa–Holm equation (es)
  • A note on the analytic solutions of the Camassa–Holm equation (es)
  • Convergence of a finite difference scheme for the Camassa–Holm equation (es)
  • On the local and nonlocal Camassa–Holm hierarchies (es)
  • Wave breaking for nonlinear nonlocal shallow water equations (es)
  • Global dissipative solutions of the Camassa–Holm equation (es)
  • An integrable shallow water equation with peaked solitons (es)
  • Evolution of the scattering coefficients of the Camassa–Holm equation, for general initial data (es)
  • Transformations for the Camassa–Holm equation, its high-frequency limit and the sinh-Gordon equation (es)
  • Algebro-geometric solutions of the Camassa–Holm hierarchy (es)
  • On the inverse spectral problem for the Camassa–Holm equation (es)
  • Euler equations on homogeneous spaces and Virasoro orbits (es)
  • Global conservative multipeakon solutions of the Camassa–Holm equation (es)
  • Initial boundary value problems of the Camassa–Holm equation (es)
  • Integral and integrable algorithms for a nonlinear shallow-water wave equation (es)
  • Blow-up, blow-up rate and decay of the solution of the weakly dissipative Camassa–Holm equation (es)
  • Finite propagation speed for the Camassa–Holm equation (es)
  • Symplectic structures, their Bäcklund transformations and hereditary symmetries (es)
  • Orbital stability of solitary waves for a shallow water equation (es)
  • A blow-up result for the periodic Camassa–Holm equation (es)
  • Singular limit problem of the Camassa–Holm type equation (es)
  • Low-regularity solutions of the periodic Camassa–Holm equation (es)
  • Modulation of Camassa–Holm equation and reciprocal transformations (es)
  • On the Cauchy problem for the Camassa–Holm equation (es)
  • Geodesic flow on the diffeomorphism group of the circle (es)
  • Existence time for the Camassa–Holm equation and the critical Sobolev index (es)
  • Multi-symplectic integration of the Camassa–Holm equation (es)
  • The Camassa–Holm equation for water waves moving over a shear flow (es)
  • Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod (es)
  • On the Camassa–Holm equation and a direct method of solution. III. N-soliton solutions (es)
  • Global conservative solutions of the Camassa–Holm equation—a Lagrangian point of view (es)
  • On the scattering problem for the Camassa–Holm equation (es)
  • On the Camassa–Holm equation and a direct method of solution. II. Soliton solutions (es)
  • Riemann–Hilbert approach for the Camassa–Holm equation on the line (es)
  • Long-Time Asymptotics for the Camassa–Holm Equation (es)
  • The Lie algebra structure of nonlinear evolution equations admitting infinite-dimensional abelian symmetry groups (es)
  • The classical problem of water waves: a reservoir of integrable and nearly-integrable equations (es)
  • An explicit finite difference scheme for the Camassa–Holm equation (es)
  • On the higher Poisson structures of the Camassa–Holm hierarchy (es)
  • Factorization problem on the Hilbert–Schmidt group and the Camassa–Holm equation (es)
  • Wave dynamics for peaked solitons of the Camassa–Holm equation (es)
  • The Camassa–Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold (es)
  • Global existence of weak solutions to the Camassa–Holm equation (es)
  • Characteristics and the initial value problem of a completely integrable shallow water equation (es)
  • Geometric integrability of the Camassa–Holm equation (es)
  • Poisson structure and action-angle variables for the Camassa–Holm equation (es)
  • On the blow-up rate and the blow-up set of breaking waves for a shallow water equation (es)
  • On algebro-geometric solutions of the Camassa–Holm hierarchy (es)
  • Equations of Camassa–Holm type and Jacobi ellipsoidal coordinates (es)
  • Generalized Fourier transform for the Camassa–Holm hierarchy (es)
  • High-frequency smooth solutions and well-posedness of the Camassa–Holm equation (es)
  • A few remarks on the Camassa–Holm equation (es)
  • A shallow water equation on the circle (es)
  • Advances in Applied Mechanics Volume 31 (es)
  • Persistence properties and unique continuation of solutions of the Camassa–Holm equation (es)
  • Breakdown of the Camassa–Holm equation (es)
  • Conservation laws of the Camassa–Holm equation (es)
  • Do peaked solitary water waves indeed exist? (es)
  • Camassa–Holm, Korteweg–de Vries and related models for water waves (es)
  • On a completely integrable numerical scheme for a nonlinear shallow-water wave equation (es)
  • Global weak solutions for a shallow water equation (es)
  • On integrability of the Camassa–Holm equation and its invariants: a geometrical approach (es)
  • Multi-peakons and a theorem of Stieltjes (es)
  • Multipeakons and the classical moment problem (es)
  • Near-corner waves of the Camassa–Holm equation (es)
  • On solutions of the Camassa–Holm equation (es)
  • Periodic peakons and Calogero–Françoise flows (es)
  • Stability for the periodic Camassa–Holm equation (es)
  • Stability of peakons (es)
  • Stability of periodic peakons (es)
  • Stability of the Camassa–Holm solitons (es)
  • The Camassa–Holm equation on the half-line (es)
  • The Camassa–Holm equation: a loop group approach (es)
  • The correspondence between KdV and Camassa–Holm (es)
  • A singular limit problem for conservation laws related to the Camassa–Holm shallow water equation (es)
  • Cusped solitons of the Camassa–Holm equation. I. Cuspon solitary wave and antipeakon limit (es)
  • On the uniqueness and large time behavior of the weak solutions to a shallow water equation (es)
  • The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies (es)
  • Global conservative solutions of the Camassa–Holm equation (es)
  • The Camassa–Holm equation: conserved quantities and the initial value problem (es)
  • Inverse scattering transform for the Camassa–Holm equation (es)
  • A generalization for peakon's solitary wave and Camassa–Holm equation (es)
  • A convergent finite difference scheme for the Camassa–Holm equation with general H1 initial data (es)
  • Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support (es)
  • Genesis of solitons arising from individual flows of the Camassa–Holm hierarchy (es)
  • Existence of permanent and breaking waves for a shallow water equation: a geometric approach (es)
  • Fredholm determinants and the Camassa–Holm hierarchy (es)
  • Periodic conservative solutions of the Camassa–Holm equation (es)
  • Classical solutions of the periodic Camassa–Holm equation (es)
  • A shallow water equation as a geodesic flow on the Bott–Virasoro group (es)
  • Infinite propagation speed of the Camassa–Holm equation (es)
  • The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE's of shallow water and Dym type (es)
  • A convergent numerical scheme for the Camassa–Holm equation based on multipeakons (es)
  • The geometry of peaked solitons and billiard solutions of a class of integrable PDEs (es)
  • Global existence and blow-up for a shallow water equation (es)
  • Traveling wave solutions of the Camassa–Holm equation (es)
  • Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation (es)
  • About the explicit characterization of Hamiltonians of the Camassa–Holm hierarchy (es)
  • Numerical simulation of Camassa–Holm peakons by adaptive upwinding (es)
  • On the Camassa–Holm equation and a direct method of solution. I. Bilinear form and solitary waves (es)
  • The Cauchy problem for an integrable shallow-water equation (es)
  • A factorization procedure for solving the Camassa–Holm equation (es)
  • Dissipative solutions for the Camassa–Holm equation (es)
  • A note on well-posedness for Camassa–Holm equation (es)
  • The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations (es)
  • Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation (es)
  • On the isospectral problem of the dispersionless Camassa-Holm equation (es)
  • Variational derivation of the Camassa–Holm shallow water equation with non-zero vorticity (es)
  • A variational approach to the stability of periodic peakons (es)
  • The Hamiltonian structure of the Camassa–Holm equation (es)
  • A note on the analytic solutions of the Camassa–Holm equation (es)
  • Convergence of a finite difference scheme for the Camassa–Holm equation (es)
  • On the local and nonlocal Camassa–Holm hierarchies (es)
  • Wave breaking for nonlinear nonlocal shallow water equations (es)
  • Global dissipative solutions of the Camassa–Holm equation (es)
  • An integrable shallow water equation with peaked solitons (es)
  • Evolution of the scattering coefficients of the Camassa–Holm equation, for general initial data (es)
  • Transformations for the Camassa–Holm equation, its high-frequency limit and the sinh-Gordon equation (es)
prop-es:url
prop-es:urlarchivo
prop-es:volume
  • 3 (xsd:integer)
  • 4 (xsd:integer)
  • 5 (xsd:integer)
  • 7 (xsd:integer)
  • 10 (xsd:integer)
  • 11 (xsd:integer)
  • 12 (xsd:integer)
  • 14 (xsd:integer)
  • 15 (xsd:integer)
  • 19 (xsd:integer)
  • 22 (xsd:integer)
  • 23 (xsd:integer)
  • 24 (xsd:integer)
  • 26 (xsd:integer)
  • 27 (xsd:integer)
  • 31 (xsd:integer)
  • 32 (xsd:integer)
  • 33 (xsd:integer)
  • 34 (xsd:integer)
  • 35 (xsd:integer)
  • 38 (xsd:integer)
  • 41 (xsd:integer)
  • 44 (xsd:integer)
  • 46 (xsd:integer)
  • 47 (xsd:integer)
  • 50 (xsd:integer)
  • 51 (xsd:integer)
  • 52 (xsd:integer)
  • 53 (xsd:integer)
  • 55 (xsd:integer)
  • 56 (xsd:integer)
  • 57 (xsd:integer)
  • 58 (xsd:integer)
  • 59 (xsd:integer)
  • 61 (xsd:integer)
  • 65 (xsd:integer)
  • 67 (xsd:integer)
  • 71 (xsd:integer)
  • 76 (xsd:integer)
  • 78 (xsd:integer)
  • 84 (xsd:integer)
  • 95 (xsd:integer)
  • 97 (xsd:integer)
  • 101 (xsd:integer)
  • 117 (xsd:integer)
  • 121 (xsd:integer)
  • 127 (xsd:integer)
  • 154 (xsd:integer)
  • 155 (xsd:integer)
  • 157 (xsd:integer)
  • 176 (xsd:integer)
  • 181 (xsd:integer)
  • 183 (xsd:integer)
  • 192 (xsd:integer)
  • 211 (xsd:integer)
  • 216 (xsd:integer)
  • 217 (xsd:integer)
  • 221 (xsd:integer)
  • 227 (xsd:integer)
  • 233 (xsd:integer)
  • 235 (xsd:integer)
  • 239 (xsd:integer)
  • 259 (xsd:integer)
  • 271 (xsd:integer)
  • 325 (xsd:integer)
  • 336 (xsd:integer)
  • 341 (xsd:integer)
  • 343 (xsd:integer)
  • 455 (xsd:integer)
  • 457 (xsd:integer)
  • 459 (xsd:integer)
  • 460 (xsd:integer)
  • 461 (xsd:integer)
  • 2004 (xsd:integer)
  • 2005 (xsd:integer)
  • 2006 (xsd:integer)
prop-es:year
  • 1981 (xsd:integer)
  • 1993 (xsd:integer)
  • 1994 (xsd:integer)
  • 1995 (xsd:integer)
  • 1996 (xsd:integer)
  • 1997 (xsd:integer)
  • 1998 (xsd:integer)
  • 1999 (xsd:integer)
  • 2000 (xsd:integer)
  • 2001 (xsd:integer)
  • 2002 (xsd:integer)
  • 2003 (xsd:integer)
  • 2004 (xsd:integer)
  • 2005 (xsd:integer)
  • 2006 (xsd:integer)
  • 2007 (xsd:integer)
  • 2008 (xsd:integer)
  • 2009 (xsd:integer)
  • 2013 (xsd:integer)
dct:subject
rdfs:comment
  • En dinámica de fluidos, la ecuación de Camassa-Holm es la ecuación en derivadas parciales integrable, adimensional y no lineal. La ecuación fue introducida por Roberto Camassa y Darryl Holm​ como un modelo bi- hamiltoniano para ondas en . En este contexto el parámetro κ es positivo y las soluciones de son suaves . En el caso especial de que κ sea ​​igual a cero, la ecuación de Camassa-Holm tiene soluciones de «pico de solitón»: solitones con un pico agudo, con una discontinuidad en el pico y la pendiente de declive de la onda. (es)
  • En dinámica de fluidos, la ecuación de Camassa-Holm es la ecuación en derivadas parciales integrable, adimensional y no lineal. La ecuación fue introducida por Roberto Camassa y Darryl Holm​ como un modelo bi- hamiltoniano para ondas en . En este contexto el parámetro κ es positivo y las soluciones de son suaves . En el caso especial de que κ sea ​​igual a cero, la ecuación de Camassa-Holm tiene soluciones de «pico de solitón»: solitones con un pico agudo, con una discontinuidad en el pico y la pendiente de declive de la onda. (es)
rdfs:label
  • Ecuación de Camassa-Holm (es)
  • Ecuación de Camassa-Holm (es)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is owl:sameAs of
is foaf:primaryTopic of