Property |
Value |
dbo:abstract
|
- La convergencia en probabilidad se da cuando a medida que , o el tamaño de muestra, aumenta entonces la variable aleatoria (v.a.) toma valores cercanos a una constante con mayor probabilidad. Un ejemplo sencillo de esto sería, dado una v.a. que toma 2 valores c con probabilidad y con probabilidad . Entonces al hacer crecer n lo que ocurre es que el valor "n" de la v.a. aumenta pero su probabilidad disminuye a una velocidad de (1/n) mientras que la probabilidad de que la v.a. tome el valor c va tendiendo a 1. Sea una variable aleatoria cuyo índice señala el tamaño de la muestra a partir de la cual dicha variable aleatoria está construida. (es)
- La convergencia en probabilidad se da cuando a medida que , o el tamaño de muestra, aumenta entonces la variable aleatoria (v.a.) toma valores cercanos a una constante con mayor probabilidad. Un ejemplo sencillo de esto sería, dado una v.a. que toma 2 valores c con probabilidad y con probabilidad . Entonces al hacer crecer n lo que ocurre es que el valor "n" de la v.a. aumenta pero su probabilidad disminuye a una velocidad de (1/n) mientras que la probabilidad de que la v.a. tome el valor c va tendiendo a 1. Sea una variable aleatoria cuyo índice señala el tamaño de la muestra a partir de la cual dicha variable aleatoria está construida. (es)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
| |
dbo:wikiPageRevisionID
| |
dct:subject
| |
rdfs:comment
|
- La convergencia en probabilidad se da cuando a medida que , o el tamaño de muestra, aumenta entonces la variable aleatoria (v.a.) toma valores cercanos a una constante con mayor probabilidad. Un ejemplo sencillo de esto sería, dado una v.a. que toma 2 valores c con probabilidad y con probabilidad . Entonces al hacer crecer n lo que ocurre es que el valor "n" de la v.a. aumenta pero su probabilidad disminuye a una velocidad de (1/n) mientras que la probabilidad de que la v.a. tome el valor c va tendiendo a 1. (es)
- La convergencia en probabilidad se da cuando a medida que , o el tamaño de muestra, aumenta entonces la variable aleatoria (v.a.) toma valores cercanos a una constante con mayor probabilidad. Un ejemplo sencillo de esto sería, dado una v.a. que toma 2 valores c con probabilidad y con probabilidad . Entonces al hacer crecer n lo que ocurre es que el valor "n" de la v.a. aumenta pero su probabilidad disminuye a una velocidad de (1/n) mientras que la probabilidad de que la v.a. tome el valor c va tendiendo a 1. (es)
|
rdfs:label
|
- Convergencia en probabilidad (es)
- Convergencia en probabilidad (es)
|
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is foaf:primaryTopic
of | |