Property |
Value |
dbo:abstract
|
- La circunferencia goniométrica, trigonométrica, unitaria, es una circunferencia de radio uno, normalmente con su centro en el origen (0, 0) de un sistema de coordenadas, de un plano euclídeo o complejo.Dicha circunferencia se utiliza con el fin de poder estudiar fácilmente las razones trigonométricas y funciones trigonométricas, mediante la representación de triángulos rectángulos auxiliares. Si (x, y) es un punto de la circunferencia unidad del primer cuadrante, entonces x e y son las longitudes de los catetos de un triángulo rectángulo cuya es hipotenusa tiene longitud 1. Aplicando el teorema de Pitágoras, a y b satisfacen la ecuación: radio = hipotenusa. (es)
- La circunferencia goniométrica, trigonométrica, unitaria, es una circunferencia de radio uno, normalmente con su centro en el origen (0, 0) de un sistema de coordenadas, de un plano euclídeo o complejo.Dicha circunferencia se utiliza con el fin de poder estudiar fácilmente las razones trigonométricas y funciones trigonométricas, mediante la representación de triángulos rectángulos auxiliares. Si (x, y) es un punto de la circunferencia unidad del primer cuadrante, entonces x e y son las longitudes de los catetos de un triángulo rectángulo cuya es hipotenusa tiene longitud 1. Aplicando el teorema de Pitágoras, a y b satisfacen la ecuación: radio = hipotenusa. (es)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
| |
dbo:wikiPageRevisionID
| |
dct:subject
| |
rdfs:comment
|
- La circunferencia goniométrica, trigonométrica, unitaria, es una circunferencia de radio uno, normalmente con su centro en el origen (0, 0) de un sistema de coordenadas, de un plano euclídeo o complejo.Dicha circunferencia se utiliza con el fin de poder estudiar fácilmente las razones trigonométricas y funciones trigonométricas, mediante la representación de triángulos rectángulos auxiliares. satisfacen la ecuación: radio = hipotenusa. (es)
- La circunferencia goniométrica, trigonométrica, unitaria, es una circunferencia de radio uno, normalmente con su centro en el origen (0, 0) de un sistema de coordenadas, de un plano euclídeo o complejo.Dicha circunferencia se utiliza con el fin de poder estudiar fácilmente las razones trigonométricas y funciones trigonométricas, mediante la representación de triángulos rectángulos auxiliares. satisfacen la ecuación: radio = hipotenusa. (es)
|
rdfs:label
|
- Circunferencia goniométrica (es)
- Circunferencia goniométrica (es)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |